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A general framework for analysing trading rules is presented. We discuss different return concepts and different

statistical processes for returns. We then concentrate on moving average trading rules and show, in the case of

moving average models of length two, closed form expressions for the characteristic function of realized returns

when the underlying return process follows a switching Markovian Gaussian process. An example is included

which illustrates the technique.
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1. Introduction

The purpose of this article is to examine the statistical properties of one of the most popular technical

trading rules: the moving average method. The basic assumption of technical analysis is that `everything

is in the rate'. Then if markets move in trends, de®ning the prevailing trend and being able to identify

early reversals through forecasting methods is certainly helpful in assessing future rate developments.

Forecasting techniques which use only past prices to forecast future prices are called technical

indicators. They can be classi®ed in two categories: chartism and mechanical system.

Charting is the oldest branch of technical analysis. Chartism is based on the assumption that

trends and patterns in charts re¯ect not only all available information but the psychology of the

investor as well. Analysts who use charts look for graphical cycles and repetition of patterns to

discern trends. The rules derived from the analysis of charts are often subjective and, as such,

chartism is considered more of an art than a science. This is primarily why it has not been possible

to de®ne chart patterns with mathematical rigour. Neftci (1991) demonstrates this point for at least

two popular charts methods. He argues that they are ill-conceived and that no proper study of their

usefulness can be achieved. This is why chartist techniques will be ignored in our paper, which will

concentrate instead on objective rules only.
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Mechanical systems are conceived in a way to trigger indisputable sell and buy signals following

a decision rule based on past data, usually by calculating if the price is above or below a particular

entry point. These systems are typically not concerned with how much the price is above or below

the entry point. They attempt to predict the direction of the future price without searching to

forecast its level. They are used to detect major downturns and upturns of the market. The

appropriateness of these indicators is conditional to the fact that trends in prices tend to persist for

some time and can be detected. Three main features characterize mechanical systems: path-

dependency, convexity, and non-uniqueness. By design, mechanical systems depend on the history of

price movements prior to the end of the investment horizon. Consequently, they are highly path-

dependent strategies. The usual rule is to trade with the trend. The trader initiates a position early in

the trend and maintains that position as long as the trend continues. Almost all mechanical systems

are trend-following and so exhibit convex payoffs. There are a few which belong to the family of

contrary opinion indicators, known as well as reverse trend-following rules, and so display concave

payoffs. They can be used on their own but usually they are applied in combination with trend-

following systems. The main dif®culty with mechanical trading systems is that a rule has to be

chosen from an in®nite number of alternatives. Since those systems are assumed to re¯ect

(mechanically) the expectations of the forecaster, there can exist as many rules as there are different

expectations.

There are so many relevant trading rules that it is unrealistic to list them all. In what follows we

concentrate on the most popular rule among practitioners and academics: the moving average

method. The use of this method to forecast ®nancial markets goes back at least to Donchian (1957)

and has since been widely used by market practitioners, as witness numerous and regular papers in

Technical Analysis of Stock and Commodities and Futures. In comparison, the study of technical

analysis by academics is relatively new. One of the ®rst studies is due to Alexander (1961). Further

empirical research on the usefulness of technical analysis has followed. Applications among others

can be found in Goodhart and Curcio (1992) for the foreign exchange markets, in Silber (1994) for

the futures markets and in Corrado and Lee (1992) for the stock markets. Recent work by LeBaron

(1991, 1992), Neftci (1991), Taylor (1994), Brock et al. (1992), Levich and Thomas (1993) and

Blume et al. (1994), have stressed the statistical properties of technical trading rules and the insights

they might give us about the underlying process. Although Neftci (1991) has examined the

Markovian properties of trading strategies, there is only a scattered literature on their analytic

properties. One exception is the thesis by Acar (1993) which studies the problem in a systematic

way. Broadly his results hinge on the following three ideas:

(i) the distribution of returns,

(ii) the nature of the trading rule,

(iii) the particular returns concept involved.

Given particular choices for each of these, he proves various theorems. The contribution of this paper is

to present and generalize some of these results, in particular, we concentrate on data generated by a

Markovian switching model, popularized and applied to asset prices by Hamilton (1989). In Section 2

we list our choices for asset return distribution, trading rules, and returns concept. In Section 3, we

establish the realized rate of return for the simple moving average of order 2 under Markovian

assumptions, and present an application of our results to FTSE 100 Futures returns in Section 4. Section

5 concludes the paper.
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2. De®nitions for rules and returns

Suppose that we observe over T periods the price of an asset Pt that holds for one time period. Let

X t � ln (Pt)ÿ ln (Ptÿ1). Our choice of distribution for Pt or X t is

X t � á� åt (2:1)

where åt � iid(0, ó 2), the log random walk with drift.

Pt � Ptÿ1 � á� åt (2:2)

where åt � iid(0, ó 2), the (arithmetic) random walk with drift for prices.

A third choice of asset price distribution is a Markovian process. One example of this is the

switching Markov model popularized by Hamilton (1989)

i:e: X t � á0 � á1St � åt (2:3)

where åt � iid(0, ó 2) and St is a 2 state Markov variable, Prob(St � 1jStÿ1 � 1) � p, and

Prob(St � 0jStÿ1 � 0) � q. This is a very simple version, we could have ó depending upon the state, St.

The point here is that there may be high and low state returns and it may be possible for trading rules to

incorporate information which involves (Markovian) information about the next state. Another example

is the autoregressive (mean-reverting) process.

X t � â� áX tÿ1 � åt (2:4)

Turning now to trading rules, we shall restrict ourselves to the two following families, the

arithmetic and geometric moving average rules.

Speci®cally, we shall de®ne a variable I t � 1 (buy) and I t � ÿ1 (sell) whose values are governed

by some rule, i.e. I t � 1 if f (X t, X tÿ1 . . .) > 0. With this convention we de®ne the following.

2.1 Moving average rules

Geometric Moving Average Rules of length m are de®ned by the rule,

I t � 1 iff Pt >
Ymÿ1

j�0

Ptÿj

0@ 1A 1
m

I t � ÿ1 otherwise (2:5)

Arithmetic Moving Average Rules of length m are de®ned by

I t � 1 iff Pt >
Xmÿ1

j�0

Ptÿj=m I t � ÿ1 otherwise (2:6)

If we take (natural) logarithms of (2.4), and rearrange we see that

X t > ÿ
X(mÿ2)

j�1

(mÿ ( j� 1))X tÿj

(m� 1)
(2:7)

so that a geometric MA rule in prices has a weighted arithmetic MA analogue in returns.
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Acar (1993: 61) shows that if we rearrange Equation 2.6 by (1ÿ Ptÿ1=Pt)� (1ÿ Ptÿ2=Pt) �
. . . (1ÿ (Ptÿm�1)=Pt) > 0 and use 1ÿ (Ptÿj=Pt) � ln (Pt=Ptÿj) � ln ((Pt=Ptÿ1) . (Ptÿ1=Ptÿ2) . . .
(Ptÿ(jÿ1)=Ptÿj)) � ÿ

P jÿ1
k�0 X tÿk then Equation 2.6 becomes, upon simpli®cation,

Pmÿ1
j�1 (m ÿ

j)X tÿj�1 > 0 which is just a rearrangement of Equation 2.7. Thus we can see that the two families

of rules are approximately the same assuming the near equality of arithmetic and geometric returns.

Acar (1993: 3.20) provides some numerical results which show the essential equivalence of the two

rules for numbers normally encountered in empirical ®nance. The reason we have laboured this point

is that for the calculation of analytical results, if we assume log-normal prices and normal (log) rates

of returns then it is more tractable to work with Equation 2.6 rather than Equation 2.7.

In the family of MA( ) rules, it turns out that the MA(2) rule leads to analytic results. Another

tractable rule, and one that has practical relevance is the MA(1) rule. Many rules examined by

Brock et al. (1992) are of the form involving MA(150) or MA(200)'s. Clearly if the process is

stationary one can work with the asymptotic distribution. In the case of a geometric MA(2) rule,

I t � 1 iff Pt > (Pt Ptÿ1)1=2 iff Pt > Ptÿ1, iff X t . 0 while for an arithmetic MA(2) rule I t � 1 iff

Pt > (Pt � Ptÿ1)=2 iff Pt > Ptÿ1 iff X t . 0 so that geometric and arithmetic MA(2) rules in prices

coincide and correspond to X t . 0. An extension to MA rules is an MA rule with band

If w
(n)
t � X t ÿ

Xn

i�1

X tÿi=n . â buy, I t � 1

If w
(n)
t ,ÿâ sell, I t � ÿ1

If ÿ â, w
(n)
t , â hold

(2:8)

Finally we deal with the issue of returns, the ®rst concept is the standard notion of returns for a

®xed period, we de®ne this as RN where

RN �
XN

j�1

X t�j I t�jÿ1 (2:9)

For this concept to be appropriate, the investor has decided to follow the strategy for N periods

irrespective of how prices behave. We call this the unrealized return.

For the second concept we wish to capture the idea that if prices fall at time n, we will sell in

time n. In this formulation n is the value of a random variable N and we call such returns realized

returns, denoted by RRn

RRn �
Xn

j�1

X j (2:10)

In our de®nition of RRn, if our rule is a buy and hold rule until prices fall, then X 1 . 0, . . . , X nÿ1 . 0,

Xn , 0, and It � 1, t � 1, . . . , nÿ 1, if n . 1, In � ÿ1. In the above case we assume the decision to

buy is made prior to observing prices.

Because RRn depends upon a stochastic n we need to consider the unconditional realized returns

RR, where RR is de®ned by,

RR �
X1
n�2

RRn Prob(N � n) (2:11)
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and N is de®ned by the length of the buy (sell) position.

Finally, we can also consider the returns per unit time and the realized return per unit time, these

are de®ned by

RIn � Rn=n

RRIn � RRn=n

RRI �
X1
n�2

RRIn Prob(N � n)

(2:12)

In what follows we shall examine the statistical properties of the above returns for MA trading rules

under our different distributional assumptions.

3. Moving average rules, theory

Our ®rst Proposition considers the properties of RR de®ned in (2.11) when the underlying stochastic

process is Markovian, we assume that we hold whilst prices rise and sell the ®rst time prices fall. To be

speci®c, we buy initially for whatever reasons, if prices rise, we continue to hold and we hold until

prices fall at which time we sell.

Proposition 1

For an MA(2) rule given by Equation 2.5 or 2.6 and a stationary Markovian process such as (2.3) or

(2.4) the characteristic function of RR, öR(s), is given by

öR(s) � (1ÿ ð1)öÿ(s)� ð1(1ÿ p11)ö�(s)ö�ÿ(s)

1ÿ p11ö��(s)

where ö��(s) � E(exp (iX ts)jX t . 0, X tÿ1 . 0), ö�ÿ(s) � E(exp (iX ts)jXt , 0, Xtÿ1 . 0), ö�(s) �
E(exp (iX ts)jX t . 0), öÿ(s) � E(exp (iX ts)jXt , 0) and p11 � prob(X t . 0jXtÿ1 . 0), ð1 �
prob(X 1 . 0).

Proof

Prob(N � n) � Prob(X 2 . 0, . . . , Xnÿ1 . 0, X n , 0jX1 . 0) . Prob(X1 . 0)

� pnÿ2
11 (1ÿ p11)ð1 if n > 2

� (1ÿ ð1) if n � 1
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\ E exp i
XN

t�1

Xts

 !,
N � n

0@ 1A � ö�(s)ö
nÿ2
�� (s)ö�ÿ(s) if n > 2

� öÿ(s) if n � 1

\ E exp i
XN

t�1

X ts

 ! !
�
X1
n�1

E exp i
XN

t�1

Xss

 !,
N � n

0@ 1AProb(N � n)

and the result follows.

Comment

The probability ð1 needs to be the steady state probability to guarantee that the process is Markovian

and stationary. However, ð1 can be allowed to take other values as long as the terms ö��(s) and ö�ÿ(s)

stay the same. In this case öÿ(s) may change.

Corollary (1.1)

If we condition on the event X 1 . 0, which means that we know that X 1 . 0 prior to going long in the

asset, then öR1(s) � (1ÿ p11)ö�(s)ö�ÿ(s)=(1ÿ p11ö��(s)).

Proof

A simple proof is to put ð1 � 1 and the result follows. The substitution ð1 � 1 needs to be interpreted

in the light of comments after the main proof. Note that öR1(s) is the characteristic function of RR

where we have decided to buy and we know that returns in the ®rst period are positive.

Corollary (1.2)

If the (X t) process is iid then ö��(s) � ö�(s), ö�ÿ(s) � öÿ(s) and öR(s) � (1 ÿ
p11)öÿ(s)ö�(s)=(1ÿ p11ö�(s)).

Corollary (1.3)

If, the process satis®es conditions of Corollary 1.1, and X t has a symmetric distribution öR(z) �
öÿ(s)ö�(s)=(2ÿ ö�(s)) (Acar, 1993: 3.28).

Proof

Put p11 � 1
2

in Corollary 1.1.
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We note in passing that it does not seem possible to ®nd a closed form solution for the

distribution of RRI even under the assumption that Xt is iid. Since there is great interest in the 2

state Markovian switching model given by Equation 2.3 we shall present a detailed investigation of

the properties of this model in the next section. We further remark that a contrarian strategy would

lead to an analogous result to Proposition 1. Contrarian strategies, and their analysis, are of great

interest in ®nance.

Corollary (1.4)

A contrarian strategy in Proposition 1.1 is to buy for whatever reasons, hold as long as X i , 0, and sell

when X n . 0, which, for a stationary Markovian framework leads to the following, de®ne

öÿÿ(s) � E(exp (iX ts)jX t , 0, Xtÿ1 , 0)

öÿ�(s) � E(exp (iX ts)jX tÿ1 , 0, X t . 0)

p00 � Prob(Xt , 0jX tÿ1 , 0)

Then öR(s) is the characteristic function of RR where

öR(s) � ð1ö
�(s)� (1ÿ ð1)(1ÿ p00)öÿ(s)ö�ÿ(s)

1ÿ p00ö��(s)

Proof

The proof is identical to Proposition 1.

An interesting extension to Corollary (1.3) is to ask ourselves, how does the pdf of RR change

given the information that X 1 . 0, X 2 . 0, . . . X k . 0? We shall answer this in Corollary (1.5).

Corollary (1.5)

If we have the information that X 1 . 0, X 2 . 0, . . . , X k . 0, then öRk(s) � öR1(s) for k � 1 (this

is just a restatement of Corollary (1.1) and öRk(s) � ö�(s)ö
( kÿ1)
�� (s)öR(s) for k > 2.

Proof

E exp i
XN

t�1

X ts

 !����N � n, n > k

 !
� ö�(s)ö

( kÿ1)
�� (s) . E exp i

XN

t�k�1

Xts

 !����N � n, n > k

 !
and the result follows from Proposition 1.

In the case that Xt is (iid) we would want to know that if returns are symmetric about 0 then

E(RR) � 0, we next prove that it is true. To do so we ®rst calculate E(RR) from Proposition 1.
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Proposition 2

For the rule and the process as described in Proposition 1

E(RR) � (1ÿ ð1)ìÿ � ð1(ì�ÿ � ì�)� p11ð1ì��=(1ÿ p11)

where ì� � E(X tjX t . 0), ìÿ � E(X tjXt , 0), ì�ÿ � E(XtjXt , 0, Xtÿ1 . 0) etc.

Proof

Differentiating the characteristic function gives

@öR(s)

@s
� (1ÿ ð1)

@öÿ(s)

@s

�
ð1(1ÿ p11) (1ÿ p11ö��(s))

@ö�ÿ(s)

@s
ö�(s)� @ö

�(s)

@s
ö�ÿ(s)

� �
ÿ p11

@ö��(s)

@s
(ö�(s)ö�ÿ(s))

� �
(1ÿ p11ö��(s))2

Using ö9R(0) � iE(RR), ö9�(0) � iì� etc and ö�(0) � öÿ(0) � ö��(0) � 1 etc gives the result.

This has the implication that if returns are symmetric and iid then ð1 � p11 � 1
2
, ì� � ÿìÿ,

ì�� � ì� and ì�ÿ � ìÿ, so that, as anticipated, E(RR) � 0.

3.1 Moving average trading rules and the Markovian switching model

We now consider Proposition 1 under the assumption that X t is generated by

X t � á0(1ÿ St)� á1St � (ó0(1ÿ St)� ó1St)et (3:1)

The above conditions imply that pdf (XtjSt � 1)�d N (á1, ó 2
1), pdf (X tjSt � 0)�d N (á0, ó 2

0), where

�d N (ì, ó 2) means distributed as a normal with mean ì and variance ó 2. Furthermore, under the

stationary assumption, ð � Prob(St � 1), the unconditional probability,

pdf (X t)�d (1ÿ ð)N (á0, ó 2
0)� ðN (á1, ó 2

1) (3:2)

This tells us that Xt is distributed unconditionally as a mixture of normals. We now consider the

characteristic function of X t given X t . 0, we present the result which is probably well-known as

Lemma 1.

Lemma 1

If y�d N (ì, ó 2) then
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ö�(s) � E(exp (isy)jy . 0)

�
exp

(ì� ó 2 is)2 ÿ ì2

2ó 2

� �
Ö

ì� ó 2 is

ó

� �
Ö

ì

ó

� �
and

öÿ(s) � E(exp (isy)=y , 0) � ö�(ÿs) if ì � 0

Ö is the standardized normal distribution function.

Proof of Lemma 1

Let

m�(s) � E(exp (sy)jy . 0)

�

�1
0

exp (sy)
1

(2ðó 2)1=2
exp

ÿ(yÿ ì)2

2ó 2

� �
dy

Ö(ì=ó )

Completing the square and some boring algebra gives us the result, note that ö�(s) � m�(is).

Q.E.D.

We now note that

ö�(s) � E(exp (iX ts)jXt . 0)

where the pdf of X t is given by (3.2)

ö�(s) �
(1ÿ ð)

�1
0

eiX t s N (á0, ó 2
0) dX t � ð

�1
0

eiXt s N (á1, ó 2
1) dX t

(1ÿ ð)Ö
á0

ó0

� �
� ðÖ

á1

ó1

� �

�
(1ÿ ð) exp

(á0 � ó 2
0 is)2 ÿ á2

0

2ó 2
0

" #
Ö

á0 � ó 2
0is

ó0

� �
� ð exp

(á1 � ó 2
1is)2 ÿ á2

1

2ó 2
1

" #
Ö

á1 � ó 2
1 is

ó1

� �24 35
(1ÿ ð)Ö

á0

ó0

� �
� ðÖ

á1

ó1

� � !
Using Lemma 1, we can now prove Proposition 3 which details the characteristic function öR(s)

described in Proposition 1 using the model in Equation 3.1. Lemma 1 can be used directly to evaluate

ö�(s). It is straightforward to calculate öÿ(s) if we know ö�(s).

We de®ne the following, ðij � Prob(X tÿ1 � i, X t � j), i, j � 0, 1.
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Proposition 3

For the model given by Equation 3.1 the following expressions hold

ö��(s) �

X1

k�0

X1

j�0

ðkjÖ
ák

ók

� �
exp

(áj � ó 2
j is)2 ÿ á2

j

2ó 2
j

 !
Ö

áj � ió 2
j s

ó j

 !
X1

k�0

X1

j�0

ðkjÖ
ák

ók

� �
Ö

áj

ó j

� �
and

ö�ÿ(s) �

X1

k�0

X1

j�0

ðkjÖ
ák

ók

� �
exp

(áj � isó 2
j )2 ÿ á2

j

2ó 2
j

 !
1ÿÖ áj � ió 2

j s

ó j

 ! !
X1

k�0

X1

j�0

ðkjÖ
ák

ó k

� �
1ÿÖ áj

ó j

� �� �

Proof

See Appendix.

The conclusion of Lemma 1 and Proposition 2 allows us to fully evaluate öR(s) for Equation 3.1

described in Proposition 1. In turn we can use this result to evaluate the distribution function via

numerical integration. We shall illustrate our discussion and results by a worked example.

4. Moving average rules, application

4.1 An application to the FTSE Futures Contract

The purpose of this section is to show that we can gain insight on the empirical returns generated by the

moving average of order 2 using the theoretical results established in previous sections. Our method-

ology is straightforward. This consists of

(a) establishing the Markovian process which generates the underlying ®nancial asset

(b) observing the distributional properties of the returns generated by the S(2) rule

(c) comparing the properties of the S(2) empirical returns with their theoretical values assuming that

the ®nancial asset follows a Markovian process with known parameters.

The most obvious choice of ®nancial instrument is the FTSE futures contract. Previous researchers

(Knight et al., 1995) have shown that FTSE Futures returns are not particular normal nor are they

Markovian over a different period than the one we consider. Bearing this in mind we shall ®t the

distribution more as a demonstration of the method than as a serious investigation of the process, which

would require much more careful analysis. Our simulations roll forward each futures contract as it
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approaches the settlement data, just as a futures trader would. The futures contracts are the ®rst future

contract until the before last trading day. For all futures contracts, a unique time series of logarithmic

returns has been constructed as Xt � Ln (Pt=Ptÿ1) from May 1984 to September 1995 included. Table 1

illustrates an example of rollovers. Characteristics of the underlying time series can be found in Table 2,

whereas estimates of the Markovian model are given in Table 3.

The Markov switching model ®ts two different regimes: in the ®rst regime we have a large

negative mean, insigni®cantly different from zero, and high volatility, in the second regime the mean

is positive but with lower volatility. The values in Table 3 could be used to calculate ð1 and ðij,

however it is much simpler to calculate these directly from the data.

In Figure 1 we present the ®ltered probabilities of being in the ®rst regime, these tell us when the

probability of being in the ®rst regime is high/low given all the sample information and correspond

to a plot of a regression line in the case where the variable St is as in (2.3). In particular, the three

high peaks near 800, 1600 and 2000 correspond to the October 87 crash, the August 90 invasion of

Kuwait and the September 92 withdrawal from the ERM. Overall we have a high probability of

being in the second regime, i.e. ð � 0:96, that is re¯ected also by the transition probabilities: the

probability of remaining in the second regime is 0.994, the positive mean regime is highly persistent

whilst the negative mean regime is not, the probability of remaining on the ®rst regime is 0.858.

Considering the realized returns of a MA(2) rule given by Equations 2.5±2.6 we have 1730

observations over the sample of 2883.

Table 2. FTSE futures basic statistics

Underlying returns

Mean 0.0191%

Standard deviation 1.0781%

Sample variance 0.0116%

Kurtosis 25.657

Skewness ÿ1.665

Range 24.81%

Minimum ÿ16.72%

Maximum 8.09%

Count 2883

Table 1. Futures time series

Date

Delivery

month

Price (March 95)

P1,1

Price (June 95)

P2,1

Logarithmic returns

Xt � Ln (Pt=Ptÿ1)

14 Mar 95 Mar 95 3057 ± ±

15 Mar 95 Mar 95 3045 ± ÿ0:39% � Ln (3045=3057)

16 Mar 95 Mar 95 3093 3099.5 1:56% � Ln (3093=3045)

17 Mar 95 Jun 95 ± 3090.0 ÿ0:31% � Ln (3090=3099:5)

20 Mar 95 Jun 95 ± 3142.0 1:67 � Ln (3142=3090)

21 Mar 95 Jun 95 ± 3158.0 0:51% � Ln (3158=3142)
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Table 3. Markovian model

Variable Value and

á0 ÿ0.003142122

(0.003044925)

á1 0.000322833

(0.000180365)

ó 2
0 0.0010245

(0.0002009)

ó 2
1 0.00008003

(0.00000025)

q 0.99447367

(0.00197927)

p 0.858185885

(0.050910174)
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Fig. 1. FT100 futures and 2 state Markov model, probability of state 1.
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We next report the ®rst moments in Proposition 2 calculated by the characteristic function of RR

for an MA(2) rule given by (2.5±2.6) and a stationary Markovian process of Table 3. We have

ìÿ � ö9ÿ (0) � ÿ0:00779, ì� � ö9�(0) � 0:00785, ì�ÿ � ö9�ÿ(0) � ÿ0:01070 and ì�� �
ö9��(0) � 0:00995, these should be compared with the empirical moments that are respectively

ÿ0:00804, 0.00775, ÿ0.00788 and 0.00778. We see that the Markovian model does a reasonable job

in replicating the sign and level of the returns generated by an MA of order 2.

The relevant question is when will a rule such as the one we have analysed in the previous

section be pro®table. Turning to the general case, it has been shown by Silber (1994) and others that

MA rules are pro®table when there is mean reversion about a positive trend in prices. The rule's

ability to let us out of the market when below the trend may allow us to outperform a buy and hold

strategy. Turning to the MA(2) model with Markovian returns in particular we can use the results of

proposition 2 to infer circumstances when we might make positive realized returns. If we take the

simplifying case that ð1 � 1=2, i.e. that on average half of the returns are positive then E(RR) can

be simpli®ed to E(RR) � 1=2(ìÿ � ì�ÿ � ì� � ( p11=(1ÿ p11))ì��. A set of conditions that would

guarantee a positive expected return could be ð1 � 1=2, ì�.ÿìÿ, ì��.ÿì�ÿ and p11 . 1=2. In

words these conditions say that if returns are positive this period they are more likely to be positive

next period, if upside returns are on average higher than downside returns next period given positive

returns this period then we make a pro®t on average. Broadly, these conditions point to two

requirements for Markovian processes to lead to pro®table trading. These are the presence of some

positive autocorrelation and higher upside returns than downside returns. We present a lemma which

gives further light on these conditions.

Lemma 2

If á0 is not equal to á1, then Corr(Xt, X tÿ1) . 0 iff p11 .ð1.

Proof

We show in the appendix that

Corr(X t, X tÿ1) � (á0 ÿ á1)2( p11 ÿ ð1)

(á0 ÿ á1)2(1ÿ ð)� (ó 2
0(1ÿ ð)� ó 2

1ð)

This lemma tells us that Corr(X t, Xtÿ1) is positive iff the probability that Xt . 0 given Xtÿ1 . 0

is greater than the probability that X t . 0, and that the returns in the two regimes are different.

Intuitively this is the condition that will reward our trading rule. The positive autocorrelation gives

us the mean reversion and ì�.ÿìÿ and ì��.ÿì�ÿ correspond to a positive trend.

5. Conclusions

In this article we have presented a taxonomy of trading rules and returns. In one particular case, the

MA(2), it is possible to compute the characteristic function, and hence the distribution function, of
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realized returns. These results are re®ned in order to take account of partial information. Finally

the calculations necessary to use these results in the case of the Gaussian Markov switching

regime model are presented and an empirical example is shown. It becomes clear that the analysis

produces a large number of interesting statistics that could be used to analyse not just the trading rule,

but, possibly more importantly, the properties of the underlying price process itself. A full empirical

analysis would involve a separate paper which we plan to do in the future. Further extensions to our

work that we hope to consider involve discussion of MA(1) rules and other distributional assumptions

governing returns.
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Appendix

Derivation of the characteristic functions ö�ÿ(s) and ö��(s).

Proof

We write out

X t � á0(1ÿ St)� á1St � (ó0(1ÿ St)� ó1St)et

Let i refer to state of Stÿ1, i � 0, 1, and j refer to state of St. Prob(Stÿ1 � k, St � j) � ðkj, in particular,

letting p11 � p and p00 � q, ð01 � (1ÿ q)(1ÿ ð), ð00 � q(1ÿ ð), ð11 � pð, ð10 � (1ÿ p)ð.

The joint pdf (X t, X tÿ1jStÿ1 � k, St � j) � N (ák , ó 2
k)N (áj, ó 2

j ) where, for example, pdf (Xt,

Xtÿ1jStÿ1 � 1, St � 0) � N (á1, ó 2
1)N (á0, ó 2

0). Thus, by the law of total probability pdf (Xt, Xtÿ1) �P1
k�0

P1
j�0ðkj N (ák , ó 2

k)N (áj, ó 2
j ) and Prob(X t . 0, Xtÿ1 . 0) �PPðkj

�1
0

�1
0

N (ák , ó 2
k)N (áj,

ó 2
j ) dX t dXtÿ1 �

PP
ðkjÖ(ák=ók)Ö(áj=ó j). By repeated use of the calculations in Lemma 1,

Pdf (X t, X tÿ1jX t . 0, X tÿ1 . 0) �

XX
ðkj N (ák , ó 2

k)N (áj, ó
2
j )XX

ðkjÖ
ák

ók

� �
Ö

áj

ó j

� �
for Xt . 0, X tÿ1 . 0.

Finally

E(exp (iX ts)jXt . 0, X tÿ1 . 0) �

XX
ðkjÖ

ák

ók

� �
exp

(áj � ó 2
j is)2 ÿ á2

j

2ó 2
j

 !
Ö

áj � ió 2
j s

ó j

 !
XX

ðkjÖ
ák

ók

� �
Ö

áj

ó j

� �
Similar calculations apply for ö�ÿ(s) except that for X t, X t , 0

Prob(X t , 0, Xtÿ1 . 0) �
XX

ðkjÖ(ák=ók)(1ÿÖ(áj=ó j))

E(exp (iX ts)jX t , 0, X tÿ1 . 0) � ö�ÿ(s) � ö��(ÿs)

�

X
k

X
j

ðkjÖ
ák

ó k

� �
exp

(áj � ó 2
j is)2 ÿ áj

2ó 2
j

 !
1ÿÖ áj � ió 2

j s

ó j

 ! !
X

k

X
j

ðkjÖ
ák

ók

� �
1ÿÖ áj

ó j

� �� �

Theoretical analysis of trading rules 179



Proof of Lemma 2

Since

X t � á0(1ÿ St)� á1St � (ó0(1ÿ St)� ó1St)et

E(Xt) � á0(1ÿ ð)� á1ð

E(X 2
t ) � á2

0(1ÿ ð)� á2
1ð� (ó 2

0(1ÿ ð)� ó 2
1ð)

and

V (X t) � (á0 ÿ á1)2(1ÿ ð)ð� (ó 2
0(1ÿ ð)� ó 2

1ð)

Cov(Xt X tÿ1) � E(X t X tÿ1)ÿ E2(Xt)

and

E(X t X tÿ1) � á2
0(1ÿ 2ð� ð p11)� 2á0á1ð(1ÿ p11)� á2

1ðp11

Corr(X t, X tÿ1) � (á0 ÿ á1)2( p11 ÿ ð)

(á0 ÿ á1)2(1ÿ ð)ð� (ó 2
0(1ÿ ð)� ó 2

1ð)
(A:1)

Result follows on inspection of (A.1).
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