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Is Technical Analysis in the Foreign Exchange Market Profitable?
A Genetic Programming Approach

ABSTRACT -- 96-006C

Using genetic programming techniques to find technical trading rules, we find
strong evidence of economically significant out-of-sample excess returns to those rules
for each of six exchange rates, over the period 1981-1995. Further, when the
dollar/deutschemark rules are allowed to determine trades in the other markets, there is a
significant improvement in performance in all cases, except for the deutschemark/yen.
Betas calculated for the returns according to various benchmark portfolios provide no
evidence that the returns to these rules are compensation for bearing systematic risk.
Bootstrapping results on the dollar/deutschemark indicate that the trading rules are
detecting patterns in the data that are not captured by standard statistical models.



I.  Introduction

In its simplest form, technical analysis uses information about historical price

movements, summarized in the form of price charts, to forecast future price trends.  This

approach to forecasting originated with the work of Charles Dow in the late 1800s, and is

now widely used as an input to trading decisions by investment professionals.  Technical

analysts argue that their approach to trading allows them to profit from changes in the

psychology of the market.  This view is well-expressed in the following statement:

The technical approach to investment is essentially a reflection of the idea that prices move in

trends which are determined by the changing attitudes of investors toward a variety of economic,

monetary, political and psychological forces… Since the technical approach is based on the theory that

the price is a reflection of mass psychology (“the crowd”) in action, it attempts to forecast future price

movements on the assumption that crowd psychology moves between panic, fear, and pessimism on

one hand and confidence, excessive optimism, and greed on the other.

Pring (1991), pp. 2–3

Although technical analysis was originally developed in the context of the stock

market, its advocates argue that it is applicable in one form or another to all asset markets.

Since the era of floating exchange rates began in the early 1970s, this approach to trading has

been widely adopted by foreign currency traders.  In a recent survey of major dealers in the

foreign exchange market in London, Taylor and Allen (1992) found that, at short horizons of

one week or less, 90% of respondents reported the use of some chartist input, with 60%

stating that they regarded such information as at least as important as economic

fundamentals.  At least part of the explanation for this state of affairs is to be found in the

unsatisfactory predictive performance of models of the exchange rate based upon

fundamentals.  This assessment is succinctly summarized by Frankel and Rose (1994), who

state that "the case for macroeconomic determinants of exchange rates is in a sorry state...



(The) results indicate that no model based on such standard fundamentals like money

supplies, real income, interest rates, inflation rates and current-account balances will ever

succeed in explaining or predicting a high percentage of the variation in the exchange rate, at

least at short- or medium-term frequencies.”

Despite its long history, technical analysis and its claims have traditionally been

regarded by academics with a mixture of suspicion and contempt.  This attitude was not

without justification, because its proponents never made serious attempts to test the

predictions of the various techniques employed.  However, a renewal of academic interest in

such forecasting techniques has been sparked by accumulating evidence that financial

markets may be less efficient than was originally believed.  Foreign exchange markets have

proved to be more volatile than was anticipated at the beginning of the floating rate era in

the early 1970s, and the "long swings" in the dollar observed in the 1980s have not been

satisfactorily explained in terms of movements in economic fundamentals.

Several studies have sought to document the existence of excess returns to various

types of trading rules in the foreign exchange market (Dooley and Shafer (1983), Sweeney

(1986), Levich and Thomas (1993), Osler and Chang (1995)).  These papers find that a class of

trading rules make economically significant excess returns in a variety of currencies over

different time periods.  However, these results are difficult to interpret.  Because the rules

considered in these studies are selected for examination ex post, there is an inevitable risk of

bias.  These investigations have deliberately concentrated on the most common and widely

used rules, but there remains some doubt as to whether the reported excess returns could

have been earned by a trader who had to make a choice about what rule or combination of

rules to use at the beginning of the sample period.

 In this paper we address this problem by using a genetic program as a search

procedure for identifying optimal trading rules.  We obtain rules for a variety of currencies



in a given sample period (1975-80), and then examine their performance over the period

1981-95.  The advantage of this approach, and the most important contribution of the paper,

is that it enables us to construct a true out-of-sample test of the significance of the excess

returns earned by the trading rules.  We find strong evidence of economically significant

excess returns after transaction costs, not only for currencies against the dollar, but also for

deutschemark/yen and British pound/Swiss franc.  The rules we identify are similar to

those commonly used by technical traders.  We also document a marked difference in the

structure of the best rules we find for dollar markets and for the deutschemark/yen market,

as indicated by the trading frequency of the rules in the different markets.  Such differences

in structure have not previously been identified.

To throw light on the possible source of the observed excess returns, we first

calculate betas for the returns to the various trading rules using a range of benchmark

portfolios, but find no evidence of significant systematic risk associated with use of these

rules.  We then consider a subsample of the rules obtained for the dollar/deutschemark and

perform bootstrapping simulations using random walk, ARMA and ARMA-GARCH

models.  It is clear that the trading rules are detecting patterns in the data that are not

produced by these models.

The paper is organized as follows.  Section II reviews the previous work on trading

rules in the foreign exchange market.  Section III discusses the implementation of the genetic

program.  Section IV presents the rules found by the algorithm, and analyzes their

characteristics.  Section V assesses the significance of the results by means of bootstrapping

simulations.  Section VI discusses the results and draws conclusions.



II.  Previous Work on Trading Rules in the Foreign Exchange Market

The trading rules that have been most intensively investigated in the foreign

exchange market use filters and moving averages.  A simple filter rule takes the form: “Go

long when the exchange rate (dollar value of foreign currency) rises by x% above its

previous local low; sell when it falls x% below its previous local high.” A moving average

rule compares a short- to a long-run moving-average, producing a buy signal when the

short-run moving average cuts the long-run moving average from below.  Even these simple

rules can take a huge variety of  forms.  For example, the moving-average rules will depend

on the time windows chosen for each moving average.  The filter rules will depend on the

size of the filter and the time window over which the previous high or low is calculated.  The

two classes of rules have obvious similarities in that they both seek to identify changes in a

trend.

In one of the earliest studies to consider technical trading in the foreign exchange

market, Dooley and Shafer (1983) focused on filter rules.  They reported evidence of

substantial profits to all but the largest filters over the period 1973-81 for the deutschemark,

yen and pound sterling.  Sweeney (1986) also looked at filter rules.  Using daily

dollar/deutschemark data over the period 1975-80, he reported excess profits over buy-and-

hold of 4% per annum for a 0.5% filter.  Neither study could reliably assess the significance

of these profits.  The bootstrap technique can be used to address this problem.  It was first

used by Brock, Lakonishok and LeBaron (1992) to judge the significance of technical trading

rule profits in the context of the stock market.  Levich and Thomas (1993) adopted a similar

approach in a study in which they used futures prices for a number of foreign currencies to

examine the profits earned by various moving average and filter rules over the period 1976-

1990.  With a random walk model generating process, they conducted bootstrapping

simulations to assess the significance of their results, and concluded that the profit levels



generated by the trading rules would have been highly unlikely to have been observed.  Kho

(1996), however, reports results suggesting that a substantial amount of the profitability of

moving average rules in foreign currency markets can be explained by a time-varying risk

premium.  Osler and Chang (1995) is the first paper we are aware of that aims to evaluate the

profitability of the head-and-shoulders pattern, one of the more complex, but very widely

used, signals in the technical analyst's toolkit.  They construct a computer algorithm to

identify this pattern, and look at the returns to this rule in several currencies over the period

1973-94.  With bootstrap methodology they find evidence of significant profits for the mark

and yen, but not for the pound sterling, Canadian dollar, French franc or Swiss franc.

Trading in all six currencies simultaneously would have yielded significant profits even after

transactions costs, although these profits were lower than typically reported for the moving

average and filter rules.

All the studies described above use a range of rules chosen ex post.  As Brock,

Lakonishok and LeBaron (1992) acknowledge, the dangers of biasing the results in such a

situation are unavoidable.  They argue that such dangers are minimized by the deliberate

choice of a simple class of rules that has been in common use for a long period of time.  But

there still remains a significant amount of latitude in choosing the exact form of the rule.  For

this reason we investigate the question of whether the data themselves can reveal the form of

an "optimal" trading rule.  For this one needs a way of searching efficiently over the space of

possible trading rules, a task for which genetic programming is well-suited.  While we do

not claim that use of this procedure completely eliminates all potential bias, because we are

forced to limit the search domain to some degree, we would argue that it substantially

reduces the risk of such bias.  Similar arguments were made by Allen and Karjalainen (1995),

who were the first to use genetic programming to identify profitable trading rules in the

stock market.  They found evidence that there were rules that were able to earn economically



significant excess returns over a buy-and-hold strategy during the period 1970-89 after

taking account of transactions costs.

All of the studies cited above which have documented the existence of profitable

trading rules in the foreign exchange market have confined their attention to exchange rates

against the dollar.  As a check on the robustness of our techniques we also examine two cross

rates, yen/deutschemark and Swiss franc/pound.

III.  The Genetic Program

There are many different ways to specify the class of trading rules over which to

search.  Perhaps the simplest would be to treat the problem as one of forecasting the

exchange rate one step ahead.  However, it is well-established that both linear and non-

linear forecasting models perform rather poorly out-of-sample (Diebold and Nason (1990),

Meese and Rose (1991)).  An alternative would be to use a non-parametric approach such as

an artificial neural network.  This still requires that the structure of the network be specified

in advance.  The advantage of the genetic programming approach is that it allows one to be

relatively agnostic about the general form of optimal trading rule, and to search efficiently in

a non-differentiable space of rules.  It also has the attractive feature that one can build in to

the search procedure the relevant performance criterion directly in the form of the measure

of fitness.  This is important because the forecasting problem is not equivalent to that of

finding an optimal trading rule, although the two are clearly linked.  A profitable trading

rule may forecast rather poorly much of the time, but perform well overall because it is able

to position the trader on the right side of the market during large moves.

Genetic algorithms are computer search procedures based on the principles of

natural selection as originally expounded in Darwin’s theory of evolution.  These procedures

were developed by Holland (1975) and extended by Koza (1992).  They have been applied to



a variety of problems in a diverse range of fields and are most effectively used in situations

where the space of possible solutions to a problem is too large to be handled efficiently by

standard procedures, or when the space is in some sense “badly behaved,” e.g., non-

differentiable, or possessing multiple local extrema.  The essential ingredients of genetic

programming are: (i) a means of representing potential solutions as character strings that can

be recombined to form new potential solutions, and (ii) a fitness criterion which measures

the “quality” of a candidate solution.  In the original genetic algorithm of Holland, potential

solutions were encoded as fixed length character strings.  Koza’s extension, referred to as

genetic programming, permits explicitly hierarchical variable length strings.  In this paper

we use genetic programming to search for optimal technical trading rules, and encode these

rules in the form of non-recombining trees.  The basic steps in constructing a genetic

program are as follows:

1. Create an initial randomly generated population of trees.

2. Calculate the fitness of each tree in the initial population according to a suitable

criterion.

3. Create a new population by applying the following operations:

(i) Copy existing individuals to the new population.

(ii) Randomly select a pair of existing trees and recombine subtrees from these to

produce a new tree.



The operations of reproduction and recombination are carried out with the probability of

selection for the operations skewed towards selecting individuals with higher levels of

fitness.1

4. Calculate the fitness of each individual in the new population.

5. Repeat these operations, keeping a record of the overall fittest individual.

Holland demonstrated a remarkable theorem for character strings of fixed length.

The operation of reproduction and genetic recombination on successive generations causes

the candidate solutions to grow in the population at approximately a mathematically

optimal rate.  Here optimality is defined by viewing the search strategy as a set of multi-

armed bandit problems, for which the optimal search strategy is known.2 The approximation

is closer in the case of problems whose solutions can be built up from subcomponents that

are “small” in a suitably defined sense.

A striking feature of the algorithm that contributes to its efficiency is implicit

parallelism.  The algorithm is explicitly parallel in the sense that it simultaneously processes

information about a large population of candidate solutions.  But it is possible to show that

the operations of reproduction and genetic recombination lead one to expect solutions

unrepresented in a given population to be generated in the new population in proportion to

their fitness.

                                                          
1 In some applications an additional mutation operation is introduced at this stage.  Koza

(1992) presents evidence to suggest that its impact is insignificant relative to that of

recombination, and we choose not to implement it here.

2 In a multi-armed bandit problem the agent has to choose each period between one of n

alternatives with constant expected payoffs which are unknown a priori.



In genetic programming, in contrast to genetic algorithms, the individual structures

that are subjected to selection and adaptation are explicitly hierarchical character strings of

variable, rather than fixed length.  These structures can be represented as non-recombining

decision trees, whose non-terminal nodes are functions, and whose terminal nodes are

variables or constants that serve as arguments of the functions.

In the application in this paper we represent trading rules as trees, and make use of

the following function set in constructing them:

• arithmetic operations: “plus,” “minus,” “times,” “divide,” “norm,” “average,”

“max,” “min,” “lag”;

• Boolean operations: “and,” “or,” “not,” “greater than,” “less than”;

• conditional operations: “if-then,” “if-then-else”;

• numerical constants;

• Boolean constants: “true,” “false”.

“Norm” returns the absolute value of the difference between two numbers, and “average,”

“max,” “min,” and “lag” operate on a time window specified by the numerical argument of

the function, rounded to the nearest whole number.  Thus, max(3) at time t is equivalent to

max(pt-1, pt-2, pt-3), lag(3) at time t is equal to pt-3, and avg(3) is the arithmetic mean of pt-1, pt-2,

and pt-3.

Figure 1 presents examples of two simple trading rules.  Rule (i) signals a long

position if the 15-day moving average is greater than the 250-day moving average, otherwise

a short position.  Rule (ii) signals a long position if the closing exchange rate has risen by

more than 1% above its minimum over the previous ten days.  The function “price” returns

the average of bid and ask quotes at a fixed time on the day in question.  Figure 2 illustrates

the recombination operation.  A pair of rules is selected at random from the population, with

a probability weighted in favor of rules with higher fitness.  Then subtrees of the two parent



rules are selected randomly.  One of the selected subtrees is discarded, and replaced by the

other subtree, to produce the offspring rule.  The operation is subject to the restriction that

the resulting tree must be a well-defined rule.  In addition, we place a limit on the maximum

possible size (100 nodes) and depth (10 levels) of a rule.

We now turn to the form of the fitness criterion.  The rules we examine switch

between long and short positions in the foreign currency.  We suppose that some amount is

held in dollars and is reinvested daily at the domestic overnight interest rate.  This can be

thought of as the margin held against borrowing an amount equal in value, either in dollars

or the foreign currency.  If the trading rule signals a long position in the foreign currency at

date t, the borrowed dollars are converted to foreign currency at the closing rate for date t

and earn the foreign overnight rate.  We denote the exchange rate at date t (dollar per unit of

foreign currency) by St , and the domestic (foreign) overnight interest rate by it  ( it
* ).  Then

the gross excess return Rt+1  (over the overnight rate in the U.S.) is given by
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The form of this expression reflects the fact that the rule now specifies the following

transaction: borrow an amount of foreign currency equal in value to the dollar holding and

convert to dollars to earn the U.S. overnight interest rate.



We denote the continuously compounded (log) excess return by ztrt, where zt is an

indicator variable taking the value +1 for a long position and -1 for a short position, and rt is

defined as:3

(3) r S S i it t t t t= − + + − ++ln ln ln( ) ln( )*
1 1 1 .

The cumulative excess return from a single round-trip trade (go long at date t, go short at

date t+k), with one-way proportional transaction cost c, is
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Therefore the cumulative excess return r for a trading rule over the period from time zero to

time T is given by:
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where n is the number of round-trip trades.  This measures the fitness of the rule.

It should be noted that our definition of excess return does not consider the return

over a "buy-and-hold" strategy.  We would argue that such a criterion is only appropriate in

markets where there is a clearly predictable trend in the asset price, as is the case in the stock

market.  While it is certainly true that the long-run trend in foreign exchange rates depends

on underlying economic fundamentals such as relative inflation rates and levels of

productivity, there is no convincing evidence, at least for the currencies we are considering,

that these factors are forecastable.  In addition, a "buy-and-hold" strategy is not well-defined

from the point of view of a global investor.  If we consider the dollar/deutschemark

exchange rate, then the "buy-and-hold" return for a German investor is the negative of that

for a U.S. investor, whereas our measure of excess return is realizable in either currency.

                                                          
3 This introduces an approximation error in the case of a short position, but it is very small —

less than 0.25% of the total cumulative excess return in all cases.



In implementing the genetic program we follow procedures similar in many respects

to those first developed by Allen and Karjalainen (1995) to find trading rules in the stock

market.  In order to allow the rules to incorporate numerical constants efficiently when the

data is non-stationary, we normalize each series by dividing by a 250-day moving average.

This means that the data series oscillates around unity, and greatly simplifies the task of

characterizing the structure of the rules we obtain.  The steps involved are detailed below:

1. Create an initial generation of 500 random rules.

2. Measure the fitness of each rule over the training period and rank according to fitness.

3. Select the top-ranked rule and calculate its fitness over the selection period.  Save it as

the initial best rule.

4. Randomly select two rules, using weights attaching higher probability to more

highly ranked rules.  Apply the recombination operator to create a new rule, which

then replaces an old rule, chosen using weights attaching higher probability to less

highly ranked rules.  Repeat this procedure 500 times to create a new generation of

rules.

5. Measure the fitness of each rule in the new generation over the training period.  Take

the best rule in the training period and measure its fitness over the selection period.

If it outperforms the previous best rule, save it as the new best rule.

6. Stop if no new best rule appears for 25 generations, or after 50 generations.

Otherwise, return to step 4.

The stages above describe one trial.  Each trial produces one rule.  If it produces a

negative excess return over the selection period, it is discarded on the grounds that it is

dominated by the strategy of never trading, and allowing initial margin to accumulate at the



overnight interest rate.4 If it produces a positive excess return, its performance is then

assessed by running it over the validation period.  We concentrate on this measure of the out-

of-sample performance of each rule in the results we report in Section IV.

IV.  Results

We obtained trading rules for six exchange rate series.5 We use the average of daily

U.S. dollar bid and ask quotations for the deutschemark, yen, pound sterling, and Swiss

franc, obtained from DRI.  These rates are collected at 4:00 p.m. local time in London from

Natwest Markets and S&P Comstock.  Daily overnight interest rates are collected by BIS at

9:00 a.m. London time.  All exchange rate data begin on 1/1/74 and end on 10/11/95.  All

interest rate data begin and end on the same dates, except for Japanese data, for which the

start date is 2/1/82.  We also created two cross-rate series, deutschemark/yen and

pound/Swiss franc, assuming the absence of triangular arbitrage opportunities.  We will

refer to these six series as $/DM, $/¥, $/£, $/SF, DM/¥ and £/SF.  For all exchange rates we

used 1975-77 as the training period, 1978-80 as the selection period, and 1981-95 for

validation.  The starting date of 1975 for the training period was dictated by the fact that we

normalized the series by dividing by a 250-day moving average.  Since the interest rate data

for the yen were available only from 1982, we measured the excess return of the yen rules in

                                                          
4 This is equivalent to initializing the search procedure by defining the initial best rule under

step 3 as the no-trade rule instead of the best rule from the first generation.

5 This project has been very computer intensive.  A back-of-the envelope estimate suggests

that it would take at least 81 days of computing time to duplicate the results in this paper on

a 120 MHz Pentium.  The calculation of the trading rules was the largest element in

computation time.  Each trial, producing one rule, took approximately two hours.



training and selection periods, and for the first year of the validation period without interest

differential.  We deliberately chose to standardize training, selection and validation periods

across all currencies to ensure maximum comparability.  Training and selection periods were

picked to avoid as much as possible the period of dollar appreciation in the first half of the

1980s to minimize the chances of biasing our results.

We distinguish between the level of transaction cost in the training and selection

periods and in the validation period.  In the latter, we choose a value for the one-way

transaction cost, c, which accurately reflects the costs faced by a large institutional trader, in

order to assess the economic significance of the profits earned by the trading rules.

However, in the former, we simply treat c as a parameter in the search algorithm, and do not

impose the restriction that it be “realistic.” We set c equal to 0.001 in the training and

selection periods, and to 0.0005 in the validation period.  We use a higher transaction cost in

training and selection periods to bias the search in favor of rules that trade relatively less

frequently.  If the problem of overfitting in-sample is associated with high trading frequency,

as seems intuitively reasonable, using a high transactions cost is one way of guarding against

this.  We report below some evidence in support of these conjectures, in the form of an

experiment in which c is set to 0.002 in training and selection periods.

Measurement of transactions costs is typically based on an approach proposed by

Frenkel and Levich (1977), and uses deviations from exchange rates consistent with the

absence of triangular arbitrage.  Dooley and Shafer (1983) used a figure of 0.1% for the round

trip transaction cost, and Sweeney (1986) used 0.125%.  Consistent with the substantial

increase in trading volume and liquidity in foreign exchange markets over the last decade,

more recent figures used tend to be somewhat lower.  Levich and Thomas (1993) consider a

round-trip cost of 0.05% realistic, as do Osler and Chang (1995).  Thus, the figure of 0.1% per

round trip that we use in our out-of-sample tests can be viewed as conservative.



In Table 1 we present information on the annual excess return averaged over all 100

rules for each currency.6 The picture that emerges is somewhat variable across currencies.

For the $/DM and DM/¥, excess returns are 6.05% and 4.10% respectively, and for all

currencies they are positive.  The average across all currencies is 2.87%.  All but four of the

$/DM rules generated positive excess returns.  Even the poorest performer in terms of mean

return, the £/SF, produced positive excess returns in 89% of cases.  This mean return

understates the return to a portfolio rule in which each rule receives uniform weight in the

portfolio because the mean return overstates transactions costs that would be netted out in

the uniform rule.  The size of this bias is 5 to 30 basis points in the annual return.

We also calculated the return to a “median” portfolio rule, in which a long position

was taken if 50 or more of the rules signaled long, and a short position otherwise.  That is, a

majority vote over all 100 rules determined the position of the trading rule.  For $/¥ and

DM/¥ this produced a substantial increase in excess return.  Although the performance for

two of the currencies deteriorated somewhat, the average excess return over all currencies

was significantly improved to 3.67%.  We find the performance of the rules surprisingly

good, in light of (i) the long out-of-sample test period, (ii) the well-documented difficulty

involved in forecasting the exchange rate at short horizons, and (iii) the limited information

set we provide for the rules.  For purposes of comparison, we report in the last row of Table

                                                          
6 Note that not all rules are necessarily distinct, even though they may appear to have a

different structure.  Classifying two rules as identical if they have the same excess return and

the same number of trades, we find that of the 100 $/DM rules, there are only 87 distinct

ones.



1 the excess return to a long position in the foreign currency held throughout the validation

period.7 The mean return to these positions is 0.6%.

There are some striking differences in trading frequency across currencies.  The

DM/¥ rules trade on average about 30 times a year, whereas the £/SF rules trade less than

four times a year.  In other words, the former sacrifice 1.5% per annum in transactions costs,

and still achieve a return of 4.1%.

The fact that the exchange rate series are related by triangular arbitrage requires

some comment.  This does not imply, as it might appear, that some of our exchange rate

cases are redundant.  A simple example will illustrate this point.  Suppose we select the three

series $/DM, DM/¥, and $/¥, and label the returns r1, r2, and r3 respectively.  Then we have

r1 + r2 = r3.  If rules for the $/DM and DM/¥ both give the same signal (long or short), then

consistency suggests that we see the same signal from the ¥/DM rule.  This follows from the

fact that we can think of a trading rule as predicting the sign of a future return.  But if the

first two rules give different signals, then either a long or a short signal from the ¥/DM rule

is consistent, and provides additional information about the relative magnitudes of the

predicted movements in $/DM and DM/¥ rates.

In Figure 3 we plot the mean annual excess returns for the individual rules against

their monthly standard deviations.  There is comparatively little variation in standard

deviation across different rules.  The explanation for this is that we constrain the rules

always to be in the market, either with a long or a short position.  Because the return to a

short position is the negative of the return to a long position, one would expect the return

variances to be similar across rules, and close to the variance of the buy-and-hold return.

While there is no clear relationship between mean and standard deviation of excess return,

                                                          
7 For the two cross rates, the yen and SF were treated as the foreign currency.



there is some tendency for rules that trade very frequently to perform poorly.  The effect of

transactions costs can only partly explain this.  It seems clear that the genetic program

occasionally produces a “rogue” rule that overfits the data, even when the vast majority of

rules perform consistently well.

Figure 4 presents a time series of the proportion of all 100 rules giving a long signal

over the validation period.  This gives a visual representation of the degree of "consensus"

among rules, and of the extent to which their signals are coordinated.  Again, there are sharp

differences across currencies.  A high proportion of the $/DM rules are identifying similar

patterns in the data.  For most of the time, 90% or more of the rules are giving the same

signal, and they tend to switch from long to short positions and vice versa at much the same

time.  It is apparent too that the rules are identifying trends, signaling long positions in the

dollar during the period of its rise up to the beginning of 1985, and short positions until the

middle of 1988.

Because of the high trading frequency for the DM/¥, it is difficult to see how well

coordinated the rules are, but clearly there is a high degree of consensus among them.  So we

present the plot over a period of a year (1984) in Figure 5.  It reveals that the rules are

remarkably well coordinated, with the majority picking switch points at much the same

time.  But in the case of the $/¥, for a substantial amount of time the proportion hovers

around 50%, indicating maximum "difference of opinion."

Next we examine in more detail the performance of a subset of the $/DM rules.

These results are presented in Table 2.  We have selected the ten rules ranked first, eleventh,

twenty-first and so on in terms of their performance in the selection period.  We find that the

rule that did best in the selection period turns out to be one of the poorest performers out-of-

sample.  It is one of only four rules out of 100 that produced negative excess returns.  As

noted above, the poor performance is only partly attributable to the transactions costs



associated with a much higher frequency of trading.  This indicates that the procedure of

having separate training and selection periods reduces, but does not eliminate, the problem

of overfitting.  Rules two to ten all produce excess returns of more than five per cent per

annum.  Trading frequency was quite variable, ranging from 31 to 175.  The monthly

standard deviations of all rules were rather similar, as was noted above.  The rule with the

best performance in this subsample, number 7, traded only about twice a year, and the mean

number of trades over all 100 rules was seven per year.

We experimented in the case of the $/DM with a level of transaction cost in training

and selection periods four times that used in the validation period (c = 0.002) and found that

this reduced the average number of trades from 107 to 76 and produced a small

improvement in mean excess return of 0.15% per annum.  It also increased the number of

rules with strictly positive excess returns from 96 to 99.  The only rule with negative excess

returns earned -0.55% per annum. So the extremely poor performers were eliminated by this

change in procedure, supporting the argument made earlier that the presence of a suitably

chosen transaction cost in the training and selection periods introduces a useful “friction”

that provides some protection against overfitting the data.

One question of considerable interest is whether the rules we have identified have a

structure that approximates any of those commonly used by technical analysts.  This is not

always easy to determine, because the rules discovered by the genetic program often have a

rather complex nested structure.8 However, we have found that in a number of cases, rules

that appear to be very complicated are highly redundant.  The most common form of

redundancy arises because a function such as max that takes an integer argument is followed

                                                          
8 The mean number of nodes for the 100 $/DM rules was 45.58, and only two rules had

fewer than ten nodes.



by a subtree that always evaluates after rounding to the same integer.  The most striking

illustration is the case of the rule that had the third-best overall performance out-of-sample,

with an average excess return of 7.78% and a total of 55 trades. This rule was represented by

a tree with ten levels and 71 nodes, but turned out to be equivalent to the extremely simple

rule: “Take a long position at time t if the minimum of the normalized exchange rate over

periods t - 1 and t - 2 is greater than one.” Given the normalization we used, the rule is very

closely approximated by “Take a long position at time t if the minimum exchange rate over

periods t - 1 and t - 2 is greater than the 250-day moving average.” We also analyzed several

rules that had a relatively simple structure.  One of these, the 25th best rule over the selection

period, had 8 nodes and reduced to: “Take a long position at time t if the three-day moving

average of the normalized exchange rate is greater than the ratio of the maximum

normalized exchange rate over the past six days to yesterday’s normalized exchange rate.”

Another, the 55th best rule over the selection period, whose daily returns had a correlation of

0.9911 with those of the median rule, prescribed: “Take a long position if the four-day

minimum of the normalized exchange rate is greater than one.” This is evidently similar to

the first rule analyzed above, as is reflected by the fact that its excess return was 7.34 and its

number of trades 37.

Given the high trading frequency of DM/¥ rules, we also attempted to examine

several of the simpler rules from that case.  We found that at least two of them could be

expressed as variants on a (12,250)-day moving average rule.  Others were much more

complex and we were unable to simplify them in any useful way.

In Figure 6 we plot a one-year moving average of the mean annual excess return to

the DM/¥ and $/DM.  This allows one to get an informal indication of some of the risk

factors associated with trading with an equally weighted portfolio rule of all 100 individual

rules.  The moving average for both exchange rates has been positive over a much longer



time period than it has been negative.  The returns for the $/DM move between greater

extremes: the minimum is around -12% and the maximum over 30%.  Comparable figures

for the DM/¥ are −8% and 14%. Although the recent past has not seen the profits of the

1980s in the $/DM market, performance since 1990 has still been good.  It remains an open

question whether rules trained on more recent data will be able to do better than those we

have identified.

There is as yet no generally agreed-upon procedure to correct the excess returns

earned by a currency trading rule for risk.  Existing models do not provide reliable estimates

of risk premia associated with individual currencies, and so one is forced to present

calculations that, while suggestive, are not firmly grounded in theory.  To discover whether

the returns to the trading rules could be interpreted as compensation for bearing systematic

risk, we calculated betas, presented in Table 3, for the returns to each portfolio of 100 rules

over the period 1981-95.  We considered four possible benchmarks: the Morgan Stanley

Capital International (MSCI) world equity market index, the S&P 500, the Commerzbank

index of German equity and the Nikkei.  Only one beta ($/¥ on MSCI World Index) was

significantly positive, with a value of 0.1689.  Interestingly, most of the estimated betas were

negative and one ($/SF on the Commerzbank index) was significantly negative.  These

figures suggest that the excess returns observed were not compensation for bearing

systematic risk.  Even if one were to take the extreme position that the associated risk

exposure is completely undiversifiable, we find that the Sharpe ratios of the $/DM and

DM/¥ rules are significantly above typical figures for the S&P 500.9

                                                          
9  The value for the $/DM is 0.5003, whereas the figure reported for the S&P 500 is generally

around 0.3.  Osler and Chang (1995) calculate a figure of 0.32, using annual total returns for

the S&P 500 from 1973 to 1994.



One of the claims persistently made by technical analysts is that the rules they use

exploit quite general features of financial markets, and are not specific to any particular

market.  To investigate this claim, we take the successful $/DM rules and run them on the

data for the other five exchange rates.  The results are reported in Table 4.  There is a marked

improvement in performance over the previous rules in all cases except the DM/¥.  The

average excess return over the five exchange rates rises from 2.23% to 3.76% and the number

of mean returns greater than zero also increases almost uniformly.  The most striking change

occurs in the $/SF case, where the excess return rises from 1.41% to 5.40%.  One must be

somewhat cautious in interpreting these results, because currency movements against the

dollar will tend to be positively correlated, and therefore the reported excess returns are not

independent.  However, it seems unlikely that all the improvement in performance could be

attributable to cross-correlations in the various exchange rates.  We conjecture that one set of

rules, trained on data from all four rates against the dollar, would have improved on our

baseline case.

Another result which emerges from this comparison, and which is perhaps more

interesting, is that the $/DM rules do substantially less well on DM/¥ data than the DM/¥

rules.  In other words, there are significant differences between dollar markets and the

DM/¥, and the trading rules pick up these differences.  This confirms a result that we might

have expected from the very large differences in trading frequency.  Indeed, we see that the

$/DM rules, when applied to the other currencies, produce rather uniform rates of trade,

more than doubling the number of trades for the £/SF, and at the same time reducing the

number of trades for the DM/¥ by 73%.



V.  Assessing the Significance of the Results Using Bootstrapping

We carry out a number of bootstrapping simulations to determine whether the rules

are simply exploiting known statistical properties of the data.  This approach has been used

in the context of assessing trading rule performance in the stock market by Brock,

Lakonishok and LeBaron (1992),10 and by Allen and Karjalainen (1995), and in the foreign

exchange market by Levich and Thomas (1993).  Bootstrapping permits one to determine

whether the observed performance of a trading rule is likely to have been generated under a

given model for the data-generating process.  The model under consideration is fitted to the

data and the residuals are saved and used with the underlying fitted parameters to generate

new simulated data sets by resampling with replacement from the distribution of the

estimated residuals.  The simulated data will possess all the characteristics of the original

data captured by the model but will lose all temporal dependence not captured by the

model.

The bootstrapping exercise used three models for the daily log return of the

exchange rate:  a random walk model, an ARMA model and an ARMA-GARCH(1,1) model.

The order of the ARMA model was chosen by the Akaike information criterion to be (2,2).

Four hundred data sets were generated from each of the three models.  For each of the ten

rules selected for analysis above, we calculated the cumulative excess return over the

simulated data sets according to the measure in equation (5), using observed interest rates.

The results of the bootstrapping simulations are presented in Table 5.  The pattern that

emerges is broadly similar across all models, with p-values generally low except in the case

of rule 1.  It would appear that the structure captured by the ARMA model can explain about

                                                          
10 This paper has a very good discussion of the technique as it has been applied in the

trading rule literature.



11 percent of the excess returns found by the rules.  The mean return for the rules run over

the simulated ARMA data is 0.57 percent per annum.  The addition of the GARCH term to

the ARMA model actually degrades its ability to reproduce the observed returns.  Although

we report the mean p-value for the ten selected rules, it cannot be interpreted as the p-value

associated with using the ten rules in combination.  An additional set of simulations for the

random walk model to examine the performance of the uniform portfolio rule produces a p-

value of only 0.0125.

VI.  Discussion

Our results present a consistent picture of the potential excess returns that could

have been earned in currency markets against the dollar over the period 1981-95.  While

there is variation in the size of the profit opportunities, in all cases excess returns are

significantly positive.  In addition, we show that such profit opportunities existed in the two

cross rates ¥/DM and SF/£.  So far as we are aware, this had not previously been

documented.  When the $/DM rules are allowed to determine trades in the other markets,

there is a significant improvement in performance in all cases, except for the ¥/DM.  The fact

that the $/DM rules did substantially less well when run on ¥/DM data than the ¥/DM

rules themselves clearly indicates that there are important differences between dollar

currency markets and the ¥/DM market, and that these differences have persisted over a

considerable period of time.

We find no evidence that the returns to these rules are compensation for bearing

systematic risk as measured by betas calculated for various benchmark portfolios (MSCI

world index, S&P 500, Nikkei and Commerzbank equity indices).  The bootstrapping results

on the $/DM indicate that the trading rules are detecting patterns in the data that are not

captured by standard statistical models.  Our results therefore are consistent with, and



indeed strengthen the previous findings on the profitability of technical trading rules in the

foreign exchange market.

There have been a number of theoretical arguments advanced recently as to why

using some form of technical analysis might be a rational, and therefore a profitable strategy

(Treynor and Ferguson (1985), Brown and Jennings (1989), Blume, Easley and O'Hara

(1994)).  However, they all hinge on some form of information asymmetry between traders,

which we suspect to be a less important factor in the foreign exchange market, at least for

daily data, than in the stock market.11

There is a source of information asymmetry, specific to the foreign exchange market,

that may play a role in generating profitable trading opportunities.  Central bank

intervention is a relatively common occurrence, and banks have private information about

future fundamentals in the form of changes in monetary policy.  If the central bank has a

targeting objective, this generates a source of speculative profit in the market (Bhattacharya

and Weller (1997)).  But this is very unlikely to be the whole story, for several reasons: (i) the

trading rules for the currencies against the dollar are profitable over the early half of the

1980s, when there was very little intervention by the Federal Reserve; (ii) there is evidence

from the work of Brock, Lakonishok and LeBaron (1992) and Allen and Karjalainen (1995)

that technical trading is profitable in equity markets, where there is no suggestion that

                                                          
11 There is recent evidence from the work of Lyons (1995) that information asymmetry

relating to dealer inventory imbalances is an important factor in explaining very high

frequency (intraday) data.



government intervention occurs;12 and (iii) it is implausible that excess returns of the size we

report could have been caused by a policy of “leaning against the wind.”

Another possibility is that evidence of profitable trading rules signals some form of

market inefficiency.  We find this plausible for a number of reasons.  First, there is other

evidence to suggest that the foreign exchange market is inefficient.  The forward discount

bias is a phenomenon that has received an enormous amount of attention in the literature

(see the surveys by Lewis (1994), and Engel (1995)).  Thus far, attempts to explain this bias as

a consequence of time-varying risk premia have been unsuccessful.  Frankel and Froot (1987)

have argued that the bias can be accounted for by expectational errors.  If this is so, and the

errors have some amount of persistence, it suggests that technical analysis may play a role in

anticipating the impact of these errors on the market.

We conclude by noting some of the limitations of our analysis, which point to some

potentially fruitful areas of future research.  We have made no attempt to optimize the

various features of the genetic programming approach which are under the control of the

researcher, such as length of training and selection periods, size of initial generation, choice

of function set, limits on the number of nodes or depth of the tree representing a rule, or

level of transactions cost in training and selection periods.  We have deliberately

concentrated here on a restricted information set consisting only of past prices, although we

                                                          
12 This statement needs some minor qualification.  There have been occasions when

government intervention in the stock market has occurred in  Japan in the recent past, and

Mark Rubinstein has suggested that there may have been intervention by the Federal

Reserve in the immediate aftermath of the stock market crash in 1987 (personal

communication).  But such occurrences are exceptional.



are currently exploring the effect of allowing the rules to make use of information about

intervention by the Federal Reserve (Neely and Weller (1997)).
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Table 1

Mean and median annual trading rule excess return

for each currency over the period 1981-95

$/DM $/¥ $/£ $/SF DM/¥ £/SF

Mean

AR*100

MSD*100

% > 0

SR

Trades

% Long

6.0485

(28.18)

3.4897

96

0.5003

106.54

50.5244

2.3400

(7.94)

3.4822

65

0.1940

107.98

78.0106

2.2750

(10.55)

3.6643

85

0.1792

130.51

63.42

1.4154

(5.63)

3.8794

84

0.1053

156.58

81.7283

4.0999

(13.09)

2.7910

85

0.4241

426.61

49.91

1.0191

(9.48)

2.9202

89

0.1007

55.25

93.5729

Median

AR*100

Trades

7.1104

35

4.5676

101

1.8466

88

0.4266

14

6.5201

451

1.5633

6

Long Rule

AR*100

MSD*100

1.0342

3.5438

1.0906

3.5793

-0.5746

3.6062

-0.0420

3.9406

1.4658

2.9345

0.5257

2.8910

NOTES: the mean return is calculated over the first 100 rules which produced nonnegative
excess returns in the selection period. It is reported as an annual percentage rate in the first
row. T-statistics are given in parentheses. The third row reports the monthly standard
deviation calculated over non-overlapping periods. The fourth row reports the number of
rules which generated positive excess returns. The fifth row reports the Sharpe ratio (ratio of
mean annual return to standard deviation of annual return). The sixth row reports mean
number of trades over all 100 rules.  The seventh row relates the mean percentage of long
positions taken by the rules. The eighth row shows the annual percentage return to the
median portfolio rule.  The ninth row provides the number of trades made by the median
portfolio rule. The last two rows provide the mean return and monthly standard deviations
to a long position in the foreign currency.



Table 2

Description of the performance of 10 trading rules for $/DM from 1981-95.

Rule No.
 of trades

AR Monthly
SD

% long

1

2

3

4

5

6

7

8

9

10

456.00

119.00

175.00

45.00

77.00

67.00

37.00

37.00

31.00

89.00

-2.7292
(-0.874)
5.7358
(1.904)
6.6309
(2.148)
6.3567
(2.072)
6.1945
(2.005)
5.9612
(1.944)
6.8719
(2.224)
5.9035
(1.916)
6.7446
(2.191)
5.8941
(1.907)

3.6468

3.5559

3.4519

3.4970

3.5375

3.4766

3.5250

3.4943

3.4862

3.5434

58.6

29.1

46.1

50.3

46.9

51.0

47.4

50.3

47.7

50.6

Mean 113.30 5.3564
(5.906)

3.5215 47.8

NOTES: the rules are ranked according to their performance in the selection period. The first,
eleventh, twenty-first and so on, are considered. The third column reports the mean annual
percentage excess return, the fourth column the monthly percentage standard deviation, and
the fifth column the proportion of the total validation period in which the rule signaled a
long position. T-statistics are given in parentheses.



 Table 3

Betas for returns to portfolio rules:  1981-1995

     Beta / standard error ¥/DM SF/£ $/DM $/¥ $/SF $/£

 World Portfolio Beta 0.0401 -0.0599 -0.0061 0.1689 0.0965 -0.0029

(s.e.) 0.0448 0.0546 0.0692 0.0617 0.0608 0.0695

S&P Portfolio Beta 0.0184 -0.0480 -0.0275 -0.0411 -0.0406 -0.0739

(s.e.) 0.0304 0.0441 0.0513 0.0398 0.0452 0.0507

Commerzbank Index
Beta

0.0125 -0.0425 -0.0792 -0.0624 -0.1210 -0.0339

(s.e.) 0.0278 0.0378 0.0428 0.0340 0.0373 0.0433

Nikkei Index Beta -0.0051 -0.0569 -0.0679 0.0038 -0.0133 -0.0310

(s.e.) 0.0282 0.0382 0.0436 0.0348 0.0389 0.0439

NOTES: the betas are the coefficients from regressing monthly excess returns from a
portfolio of 100 rules for each currency on the monthly excess returns for each of the equity
indices and no  constant. Inference with a constant in the regression was similar. The sample
was 1981-1995 for the S&P, Commerzbank and Nikkei returns and July 1985-1995 for the
Morgan Stanley World returns.



Table 4

A comparison of results from running the $/DM trading rules on all currencies:

1981-1995

$/DM $/¥ $/£ $/SF DM/¥ £/SF

AR*100 (1)

              (2)

% > 0    (1)

              (2)

SR         (1)

              (2)

Trades  (1)

              (2)

6.0485

(28.18)

6.0485

(28.18)

96

96

0.5003

0.5003

106.54

106.54

2.3400

(7.94)

4.8726

(25.53)

65

97

0.1940

0.4182

107.98

103.71

2.2750

(10.55)

4.9232

(24.02)

85

93

0.1792

0.3970

130.51

95.60

1.4154

(5.63)

5.4040

(21.83)

84

94

0.1053

0.4040

156.58

114.37

4.0999

(13.09)

2.2822

(19.31)

85

96

0.4241

0.2233

426.61

116.38

1.0191

(10.55)

1.3143

(11.45)

89

89

0.1007

0.1342

55.25

111.69

NOTES: The rows indexed (1) in the first column reproduce the results of Table 2 for easy
comparison. Refer to the notes for that table for explanation of the figures. The rows indexed
(2) report the corresponding figures when the 100 $/DM rules are run on data for other
currencies.



Table 5

Results of bootstrapping using the random walk with drift, the ARMA(2, 2) model, and the

GARCH(1, 1)-ARMA(2, 2) model

Random walk ARMA(2, 2) GARCH(1, 1)-
ARMA(2, 2)

AR % long AR % long AR % long

1

2

3

4

5

6

7

8

9

10

-1.7202
(0.5975)
-0.6519

(0.0125)
-0.9803

(0.0125)
-0.2891

(0.0225)
-0.5890

(0.0200)
-0.3413

(0.0275)
-0.3310

(0.0100)
-0.2271

(0.0300)
-0.3033

(0.0125)
-0.4857

(0.0275)

66.3

38.4

48.1

54.6

49.8

55.3

49.8

54.6

49.9

54.6

-1.3713
(0.6800)
-0.6938

(0.0275)
1.0374

(0.0500)
1.0277

(0.0575)
1.2933

(0.0675)
1.0088

(0.0525)
0.6571

(0.0275)
0.8898

(0.0625)
0.7421

(0.0300)
1.0984

(0.0600)

63.5

35.6

48.0

53.8

49.7

54.3

49.5

53.8

49.6

53.8

-2.0658
(0.6025)
-0.1815

(0.0125)
-0.6315

(0.0075)
-0.0251

(0.0175)
-0.2198

(0.0125)
-0.1043

(0.0250)
0.0015

(0.0075)
-0.0243

(0.0150)
-0.0780

(0.0050)
-0.2853

(0.0250)

71.8

41.2

45.9

52.2

46.6

52.9

47.5

52.2

47.6

52.2

Mean

Portfolio
mean

-0.5919
(0.0772)
-0.4677

(0.0125)

52.1 0.5690
(0.1115)

51.2 -0.3614
(0.0730)

51.0

NOTES: the table reports the mean excess return to each of the 10 rules examined in Table 3,
when run on 400 simulated data sets generated by a random walk, ARMA(2, 2) or
GARCH(1, 1)-ARMA(2, 2) model. The p-values, given in parentheses, report the proportion
of simulated excess returns which exceed the value produced when the rule is run on
observed data. Columns 3, 5, and 7 give the average percentage of all time periods in which
the rule signaled a long position. The bottom row reports mean excess return and p-value for
a portfolio of all 100 rules, calculated for the random walk model only.



Figure 1

Trees representing (i) a moving average rule, (ii) a filter rule. Rule (i) signals "long" if the 15-
day moving average exceeds the 250-day moving average, "short" otherwise. Rule (ii) signals
"long" if the current exchange rate has risen by at least 1% above its minimum over the last
10 days, "short" otherwise.



Figure 2
The Recombination Operation

The recombination operation involves selecting random subtrees from each parent rule, and
replacing one with the other to create a new rule, labeled "offspring".



Figure 3

Mean annual return vs. monthly standard deviation for all currencies: 1981-1995



 Figure 4

Proportion of rules indicating a long position for all currencies: 1981-95



Figure 5

Proportion of rules indicating a long position for DM/¥: 1984



Figure 6

One-year moving average excess return for $/DM and DM/¥


