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Introduction and overview

The starting point for this thesis was the cumulating empirical evidence that
discrete investment rules! such as technical trading, chartist or market tim-
ing rules are very widely used (Allen & Taylor 1992, Frankel & Froot 1990)
and also seem to ‘perform well’ (Levich & Thomas 1993, Brock, Lakonishok
& LeBaron 1992, Neftci 1991). Even as I began studying the implications of
this evidence, a second wave of papers provided mixed evidence on perfor-
mance (Brown, Goetzmann & Kumar 1998, Kho 1996, Lee & Mathur 1996),
a more careful analysis of data mining considerations (Sullivan, Timmer-
mann & White 1999) as well as microstructure issues (Ready 1997, Knez
& Ready 1996). Although empirical evidence is not uniform across stud-
ies, it is evident that the empirical properties of these investment rules has
attracted substantial interest.? Indeed, the controversy surrounding their
performance is a consequence of its implications for some important edifices
of financial economics. Surprising as this may seem, ad hoc investment rules
with provocative names (Sylla 1993) which not so long ago were deemed too
‘unscientific’ to be worth any attention, are now offering insights to issues
which lie at the heart of both empirical finance and financial theory.

An implication of this empirical evidence which has been relatively easy
to accept is that standard econometric models for financial series must be
modified if they are to account for the empirically observed statistical prop-
erties of discrete investment rules (Gencay, Ballochi, Dacorogna, Olsen &
Pictet 1999, Neely, Weller & Dittmar 1996, Brock et al. 1992). However,
whether this is a worthwhile task is a separate issue and as a matter of
fact it remains a task which has not been undertaken. It is widely accepted
that most econometric models are mis-specified and that it is only worth
accounting for any particular type of mis-specification if it seems useful to
do so for some particular purpose. Hence, the importance that is attached
to this line of research is a derivative of each economists’ opinion on whether

! The definition of discrete investment rules used here is restricted to mappings from a
state space (e.g. past prices of shares) to a set of usually binary (long/short) investment
decisions; this is broad enough to include many of the most popular technical trading and
market timing rules analysed in the literature and used in practice.

2 An exhaustive bibliography for academic research on technical analysis can be found
at http://www.iue.it/Personal/Researchers/Skouras/tabiblio.htm.

xi



xii INTRODUCTION AND OVERVIEW

the properties of investment rules are of any interest per se.

A number of reasons for which this may be the case are scattered in
the literature and collected in this thesis. On the positive side, it may
be argued that the existence of simple investment rules that perform well
contradicts popular interpretations of ‘market efficiency’ (such as that of
Malkiel (1992)) according to which any publicly available investment rule
should be ‘worthless’.? Furthermore, the existence of such rules might also
provide grounds on which to build an explanation of why investment rules
are so widely used. On the normative side, good performance indicates that
the public information used by these rules should also be used by agents
attempting to implement optimal investment decisions. This implies that
it will be useful to extend empirical analysis of optimal asset allocation
decisions to account for the role of conditioning information, which is a
challenging road for future research.*

The main aim of this thesis is twofold. Firstly, the development of tech-
niques which can deliver improved investment rules and improved estimates
of their performance. Secondly, the formalisation of the implications of in-
vestment rules’ performance for models of financial markets and individual
behaviour. To achieve these aims, certain analytical results and computa-
tional tools have been developed and are presented, where possible, with a
generality that makes them useful in a broad range of applications. Par-
tial answers to a number of questions of somewhat independent interest are
provided, including the following:

e Under what conditions is the use of technical trading rules ‘rational’
in the sense of being consistent with expected utility maximisation’?

e How should the ‘performance’ of discrete investment rules be mea-
sured?

e What are the implications of the empirically observed performance of
discrete investment rules for the efficiency with which financial markets
use public information?

e How can we account for the widespread use of discrete investment
rules?

e What is the relation between a discrete investment rule and a model
for forecasting financial series? In particular, how can a good rule be
used to improve the design of a forecasting model and how can a good
forecasting model be used to design a good rule?

# According to Malkiel (1996, p. 161) ‘Technical strategies are usually amusing, often
comforting but of no real value’.

'Direct evidence on the importance of time-varying investment opportunities for in-
vestment decisions has now been independently obtained using a variety approaches
(Brandt 1999, Campbell & Viceira 1999, Goldbaum forthcoming).



xiii

e How should parametric models for discrete investment rules be esti-
mated?

The results are presented as follows. In Chapter 1, we show that an
expected utility maximising investor solving a single period cash-asset al-
location problem will use technical trading rules if he is risk neutral (and
usually not otherwise). This is because unless very restrictive assumptions
are imposed on the behaviour of returns, only a risk neutral agent has an
optimal decision rule that is a discrete investment rule (as defined here).
Furthermore, we prove that ranking technical trading rules according to the
preferences of a risk neutral investor is identical to ranking them accord-
ing to the preferences of any mean-variance investor. On the basis of these
observations, we propose the use of this agent’s expected utility as a mea-
sure of the profitability of investment rules. These considerations provide an
expected utility justification for measuring a model’s ‘economic value’ by ex-
pected profits (Pesaran & Timmermann 1995, Leitch & Tanner 1991, Breen,
Glosten & Jagannathan 1989).

While economic value may be a reasonable theoretical measure of the
performance of a single investment rule, we are often interested in consid-
ering the empirical performance of a class of investment rules, such as a
class serving as a proxy for ‘commonly used technical trading rules’. We
show empirically that the standard approach of using an estimate of the
performance of a few rules selected from a class as a measure for the per-
formance of the class as a whole entails substantial data mining problems.
We therefore propose the use of the optimal rule in terms of economic value
as a measure of the performance of the class. However, since the optimal
rule is itself unknown, it must be estimated. The tools we develop for the
estimation of investment rules which ‘maximise the economic value of pre-
dictability’ are presented in Chapters 4 and 5 though they are referred to
in all previous Chapters. In this first Chapter they applied (in their most
rudimentary guise) to show that an estimated optimal technical trading rule
can lead to quite powerful empirical conclusions.

In particular, market efficiency can be tested using its implications for
the behaviour of investment rules. According to Latham’s (1986) defini-
tion of market efficiency (Equilibrium-efficiency), a necessary condition for
efficiency with respect to past prices is that prices do not affect agents’ de-
cisions. Using a long series of returns on the Dow Jones Industrial Average
and a parametric model of solutions to agents’ objective functions based on
technical trading rules, we find that mean-variance agents will use technical
trading rules that condition on past prices, suggesting that Equilibrium-
efficiency is rejected (for sufficiently low transaction costs). While a number
of authors have alluded to a link between technical trading rule performance
and market efficiency (Bessembinder & Chan 1998, Hudson, Dempsey &
Keasey 1996, Cornell & Dietrich 1978), this is the first study which uses an
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explicit definition of efficiency that makes a precise link with the substantial
theoretical research in this area.

Having established that an appropriate measure of an investment rule’s
performance is the utility obtained by a risk neutral user, in Chapter 2, we
focus on building forecasting models for financial returns which will perform
well when used by such an investor. One purpose of this is to develop the
link between forecasting and financial decision making; at the same time,
we are able to formulate reasonable procedures with which investors might
estimate both optimal forecasting and discrete investment rule models. Our
analysis takes the perspective of the recent literature on ‘forecasting under
asymmetric loss’ (Christofferson & Diebold 1996, Weiss 1996, Diebold &
Mariano 1995, West 1994) in the context of which it has been shown that
standard statistical measures of a forecast’s performance (such as likelihood
or squared errors) do not usually provide a good measure of the forecast’s
value for solving financial decision problems (Kandel & Stambaugh 1996,
West, Edison & Cho 1993, Leitch & Tanner 1991). We also propose an
estimation method that performs well as a ‘Risk Neutral Forecasting’ esti-
mator both analytically and using simulations, providing a route for estimat-
ing ‘maximally economically significant’ forecasting models and investment
rules.

In Chapter 3 we return to the issue of ‘rationalising’ the use of invest-
ment rules which we introduced in Chapter 1. We argue that if an agent
restricts his investment behaviour to following rules with a binary long/short
structure, he may be able to learn which types of rules in this class are good
more effectively. If the benefits from easier learning outweigh the costs of
this form of bounded rationality, it is easy to see why even a risk averse
agent may come to use a rule of this form. While the results we report in
this Chapter are very preliminary, they provide a sketch of an argument for
how a learning model can be used to explain individual behaviour. They
also indicate that certain behavioural rules may not be dominated by stan-
dard econometric techniques and therefore that a learning theory with be-
havioural foundations (e.g. Easley & Rustichini 1999) might have normative
value for investors. This is contrasted to the prevalent use of learning theory
which is in models of collective decision-making aiming to explain aggregate
phenomena (Sargent 1993).

Chapter 4 contains the statistical results that are utilised throughout the
thesis. They are presented in the form of consistency proofs for certain esti-
mators of the sign of mean regressions as it turns out that such estimators
can also be used to estimate optimal risk neutral forecasting and discrete
investment rule models. However, we show that the scope of such estima-
tors extends well beyond this particular problem: there is a large class of
interesting decision problems which are solved by the sign of a regression
mapping, either because the set of available actions is finite or because, as
is the case with the objective functions we work with in previous chapters,
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only a finite set of actions can be optimal. Furthermore, certain optimal
stopping problems, calibration exercises (e.g. that of Eisenhart (1939)) and
inverse regressions (e.g. those of Hendry & Ericsson (1991) and Ericsson,
Hendry & Mizon (1998)) can be solved or facilitated by estimating the sign
of some regression mapping. We propose and compare a number of estima-
tors that are particularly attractive when robustness to misspecification is
of particular importance. The research leading to this paper is still work in
progress, the goal of which is to find estimators for the sign of regression
mappings with tractable properties. This could be used, for example, to
conduct inference about the behaviour of discrete optimal decisions.

Finally, in Chapter 5 we consider the computational obstacles encoun-
tered when we attempt to estimate optimal discrete investment rules or re-
lated forecasting models. It turns out these are substantial so we design an
algorithm that performs this task well and may also be useful in optimising
rugged step-function landscapes which arise in other applications.

One of the broad conclusions drawn from this thesis is that it is in-
teresting to formulate parametric models of individual decisions and then
estimate them using real data. This is a difficult but worthwhile task that
can reveal aspects of the structure of the agent’s environment which are most
important to the agent. For example, estimators for investment rules may
reveal structure in financial series that is relevant for decisions yet remains
undetected by standard econometric methods. Observation of this type of
empirical regularity should lead to an improved understanding of investment
behaviour and - by extension - the properties of financial markets in general.

Interpreted as normative learning models, these estimators provide be-
havioural rules that fit neatly into the framework of statistical decision func-
tions (see Wald (1971)) when (as is the case here) the learning agent has
no control over the stochastic process affecting his objective function.” The
same applies to most of the recent research on forecasting under asymmet-
ric loss which, if built on expected utility foundations, can be interpreted as
precisely such a learning problem. This link has not yet been explored but is
a fascinating road for future research which could be nested in the powerful
theoretical framework of statistical decision theory. This might pave the
road for the empirical study of more general financial and economic decision
problems and a body of research on what might be called the econometrics
of optimal decision-making, or simply Decisionmetrics.

While I hope that this thesis will be read from front to back, it has
been written so that each Chapter can stand alone independently as a ‘po-
tential journal article’. 1 apologise to the reader for any repetitiveness and
notational inconsistencies that this may cause.

"Interestingly, Neyman (1938) referred to the use of such rules as ‘inductive behaviour’
before the development of the theory of what we now call ‘rational behaviour’.
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Chapter 1

Financial Returns and
Efficiency as seen by an

Artificial Technical Analyst

SUMMARY

We introduce trading rules which are selected by an artificially intelligent
agent who learns from experience - an Artificial Technical Analyst. These
rules restrict the data-mining concerns associated with the use of ‘simple’
technical trading rules as model evaluation devices and are good at recog-
nising subtle regularities in return processes. The relationship between the
efficiency of financial markets and the efficacy of technical analysis is inves-
tigated and it is shown that the Artificial Technical Analyst can be used to
provide a quantitative measure of market efficiency. We estimate this mea-
sure on the DJIA daily index from 1962 to 1986 and draw implications for
the optimal behaviour of certain classes of investors. It is also shown that
the structure of technical trading rules commonly used is consistent with
utility maximisation for risk neutral agents and in a myopic sense even for
risk-averse agents.

1.1 Introduction

In the last few years, increasing evidence that technical trading rules can
detect non-linearities in financial time series has renewed interest in technical
analysis (see e.g. LeBaron 19984, Levich & Thomas 1993, Brock et al. 1992,
Neftci 1991). Based on this evidence, much research effort has also been
devoted to examining whether trading rules can be used to evaluate and

OThis paper is forthcoming in the Journal of Economic Dynamics and Control and has
received the 1998 Grad Student Paper Prize from the Society of Computational Economics.



2 CHAPTER 1. AN ARTIFICIAL TECHNICAL ANALYST’S VIEW

create improved time-series and theory driven returns models (Hudson et al.
1996, Kho 1996, Gencay 1996).

In this type of empirical studies, the term technical analysis is used to
refer to the practice of investing according to well-known technical trading
rules. However, in other areas of financial theory technical analysis is some-
times defined to be any conditioning of expectations on past prices (Brown
& Jennings 1989, Treynor & Ferguson 1985). Indeed, noisy asymmetric in-
formation models in which rational agents condition on past prices because
they reflect (a noisy signal of ) private information provide one explanation of
why technical analysis is observed. Unfortunately, theoretical models which
lead to conditioning consistent with the precise form of observed technical
trading rules are currently unavailable: there is as yet no positive model of
investment behaviour consistent with the behaviour of real Technical Ana-
lysts.

This paper models Technical Analysts as agents whose actions are de
facto consistent with observed technical trading rules. Our terminology
therefore will be consistent with that of researchers examining empirical
aspects of technical analysis and as such will be more narrow than that of
theoretical models. The objective however is not the modelling of Technical
Analysts per se; rather, it is to use our model of a Technical Analyst to
derive a more sophisticated approach to examining the statistical properties
of trading rules. It is somewhat surprising that some studies have found a
single arbitrarily selected rule to be ‘effective’ over long periods (e.g. Brock
et al.) given that real Technical Analysts use different rules in different
times and in different markets. In order to truly evaluate the effectiveness
of technical analysis as implemented we need a model of how analysts adapt
to the market environment.

We provide such a model by introducing Technical Analysts who are
artificially intelligent agents (see e.g. Marimon et al. 1990). In Section 2
technical analysis is introduced in the simple case where agents are fully
informed and circumstances in which it may be a rational activity are de-
rived. This is a necessary step for the development of a model of a Technical
Analyst who learns from his environment - an Artificial Technical Analyst.
This agent chooses amongst technical trading rules and his actions are the
outcome of an explicit decision problem which formalises the loose notion
of what it means for a rule to be ‘good’ or optimal (examples of informal
uses of this term are Allen & Karjalainen (1999), Neely et al. (1996), Pictet
et al. (1996), Taylor (1994), Allen & Phang (1994), Chiang (1992) and Pau
(1991)). As we discuss in Section 3, this formalisation is important because
it indicates that an explicit measure of rule optimality can and should be
derived from a specific utility maximisation problem and that a rule which
is optimal for investors with different objective functions will not typically
exist.

A standard application of artificially intelligent agents is to design them
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so that their actions can reveal interesting aspects of the environment in
which they are placed (see e.g. Sargent 1993, pp.152-160). In this vein, we
will use our Artificial Technical Analysts to reveal certain regularities in
financial data. In particular, in Section 4 they will be used to characterise
financial series as in Brock et al., and we will show that they can provide
sharper characterisations than those based on simple technical trading rules.

In Section 5 we propose a quantitative notion of weak market efficiency
which admits measurement of the degree to which a market is weak form
efficient. Furthermore, we show that such measurements can be based on
the returns obtained by the Artificial Technical Analyst and illustrate with
a measurement of the efficiency of the Dow Jones Industrial Average index,
interpreted as a proxy for the market portfolio. This is a step in addressing
the relationship between market efficiency and the profitability of technical
analysis, an issue that has appeared in some of the theoretical literature (e.g.
Brown & Jennings 1989) but is absent from many empirical investigations
of technical analysis.

We conclude this paper with a synopsis of our results. The main contri-
bution is the introduction of the Artificial Technical Analyst, a theoretical
tool which is shown to be useful in providing corroborating empirical ev-
idence for the view many Technical Analysts hold of econometric returns
models and market efficiency: that the models are inadequate for the pur-
pose of making investment decisions and that markets are not always effi-
cient.

1.2 Technical analysis with full information

At some level of abstraction, technical analysis can be viewed as a method-
ology for selecting decision rules which determine (conditional on certain
events) whether a position in a financial asset will be taken and whether
this position should be positive or negative. One important difference be-
tween an analyst and a utility maximising investor is that the decision rules
the analyst uses do not specify the magnitude of the positions he should
take.

These observations lead us to the following description of technical anal-
ysis:

Definition 1.1 Technical Analysis is the selection of a function d : Iy —
Q which maps the information set Iy at time t to a space of investment
decisions ) = {—s,0,1}, I,s > 0 specifying the size of short, neutral and
long positions respectively.

This assumption captures the main structure of technical analysis as
traditionally practiced! (see e.g. Kaufman (1978) and Murphy (1986) - the

'In recent years investors have used increasingly sophisticated ways of conditioning
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so called ‘classics’) in that the magnitude of these positions is not specified
as a function of I;. As mentioned in the introduction, this is the definition of
technical analysis used in the economics literature on empirical properties
of trading rules. However, a different definition is used in the literature
on financial equilibrium with asymmetric information where any agent who
conditions on past prices is a technical analyst (e.g. Brown & Jennings
(1989), Treynor & Ferguson (1985)). We are not apologetic about this:
the reason we do not allow a more general definition is because we wish to
examine the properties of observed trading rules which at first sight seem
very different to the investment behaviour we would expect from utility
maximising agents. Despite their restrictive nature, these rules include the
‘market timing’ rules which have been extensively studied in the literature,
particularly since Merton (1981) developed an equilibrium theory applicable
to their evaluation.

The information sets on which these rules condition on are usually the
realisations of some random variable such as prices, volatility measures,
or the volume of trading (Blume, Easley & O’Hara 1994) of an asset. Our
focus here will be on rules which are defined on the realisation of a truncated
history of past prices Py = {P;, P,_1, P._n+1} € RY (this is expedient only
in that it simplifies the exposition - our proofs do not depend on it).

Assumption 1.1 The information set Iy on which Technical Analysis is
based is restricted to a truncated history of past prices Py. For notational
convenience, we use Ey(-) to refer to E(-|Py).

Technical Trading Rules and Rule Classes

Technical analysts change the mappings Pi— Q (or technical trading
rules) they use and not all of them use the same rules. Nevertheless, rules
used are often very similar and seem to belong to certain families of closely
related rules, such as the ‘moving average’ or ‘range-break’ family (see Brock
et al.). These families belong to even larger families, such as those of ‘trend-
following’ or ‘contrarian’ rules (see for example Chan, Jegadeesh & Lakon-
ishok (1996)). Whilst it is difficult to argue that use of any particular rule is
widespread, certain families are certainly very widely used. The distinction
between a rule and a family is formalised as a distinction between technical
trading rules and technical trading rule classes.

Definition 1.2 A Technical Trading Rule Class is a parametric func-
tion

DZPtXB—>Q

their decisions on past prices. Such conditioning is technical analysis in the sense of, for
example, Treynor & Ferguson (1985) but not in the ‘traditional’ sense which is the focus
of this study.
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which for each parameter ¢ in a parameter space B C R¥ maps past prices
into tnvestment positions.

Definition 1.3 A Technical Trading Rule is an element of a technical
trading rule class (indexved by a parameter ¢ € B)

di = D(Py,c) : P,— Q

which determines a unique investment position as a function of past prices.”

Notice that the trivial technical trading rule which always has a position
as large as possible in the asset (d; =), is identical to the ‘Buy-and-Hold’
strategy which specifies that once some quantity of an asset is bought, this
quantity should not be altered and the value of the investment should be
allowed to evolve without any form of intervention.

1.2.1 Technical analysis and rationality

Having defined the main concepts required to describe technical analysis, we
now attempt to identify investors who would choose to undertake this activ-
ity. In particular, we find restrictions on preferences of utility maximising
investors which guarantee they behave as if they were Technical Analysts.
The purpose of this is to clarify the meaning of ‘optimal technical analysis’
in a full information setting. This concept can then be applied to the more
interesting case where optimal behaviour must be learned from experience.

Consider the following simple but classic investment problem. An in-
vestor with utility function U can invest in two assets: A risky asset pay-
ing interest R;y1 = Pt%;ﬂ (random at time t) and a riskless asset (cash)
which pays no interest. He owns wealth W; and his objective is to max-
imise expected utility of wealth at the end of the next period by choosing
the proportion of wealth a invested in the risky asset. We will assume that
institutional constraints permit borrowing and short-selling at the riskless
interest rate (assumed to be zero) but only to a finite extent determined as
a multiple of current wealth, so that a is constrained to lie in the compact
set [—s,l]. Expectations E;are formed on the basis of past prices Py, as

dictated by Al.

Formally, when there are no transaction costs, the problem is:

max EtU(WtJrl)

a€l—s,l

st. W1 = aWiy(1+ Riq) + (1 — o)W,

?Notice that any set of rule classes {I;} can be seen as a meta-class itself, where the
parameter vector [¢,c] determines a specific technical trading rule. Also, note that the
way we have defined D allows us to accommodate the case where the parameter vector is
[c(P¢),c] i.e. contains estimated parameters.
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or equivalently,

max EU(Wi(1+ aRi41)), (1.1)

ac[—s,]

the solution a* of which can be denoted as a function:

a*: Py — [—s,1], (1.2)
satisfying:
a* = arg II[laXI EUW(1+aRiq)). (1.3)
ac|—s,l

In a general utility maximisation setting therefore, the proportion of wealth
invested is a function that depends on the conditional distribution of returns
on past prices, utility and wealth. Since by definition a technical trading rule
may only take three distinct values and cannot be a function of wealth, ra-
tional investment behaviour differs from technical analysis because it cannot
be described by a trading rule unless special assumptions are made about
the nature of the objective function. The inclusion of transaction costs in
the objective function cannot easily reverse this fact. Whilst it can make
a* a discontinuous function, a¢* will be limited to take values in € only un-
der unrealistic joint assumptions on utility, the conditional distribution of
returns and the nature of the transaction costs.?

In the special case that investors are risk-neutral however, their optimi-
sation problem has a bang-bang solution which depends on sign [E} (Ri+1)] -
Denoting a,, the solution to the risk-neutral investor’s problem and assum-
ing that when expected returns are zero the investor stays out of the market
(Bt (Riy1) =0< af, =0), then:

ary Py — {—5,0,1},

which is consistent with the definition of a technical trading rule.

We have therefore shown that a risk-neutral investor conditioning on past
prices will choose technical trading rules of the form typically encountered
and as defined here. Other agents may also do so, but only under very
specific assumptions on the underlying series that are unlikely to be realistic.
As we shall see in Section 5, technical trading rules are behavioural rules
that have attractive properties for certain classes of boundedly rational risk
averse agents. These properties suggest an explanation of why technical
trading rules are used by risk-averse agents.

Our current result is summarised in the following proposition:

3Except in the trivial case where large transaction costs make the buy-and-hold strategy
an optimal decision for a rational investor.
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Proposition 1.1 For all past prices, wealth and short-selling or borrowing
constraints, the solution of (1.1) for a risk-neutral investor is a technical
trading rule.

A direct corollary of this proposition is that expected utility maximi-
sation and technical analysis are compatible. This allows us to define a
technical analyst as an expected utility maximising investor:

Definition 1.4 A Technical Analyst is a risk-neutral investor who solves:

max d(Py) - By(Rey1), (1.4)

where D is a technical trading rule class.

We will let R,‘f 1= d(P¢)-Ryy1 denote the returns obtained by a technical
analyst who uses a rule d. Clearly, different trading rules lead to different
expected returns.

1.3 Artificial Technical Analysts

Having specified what is meant by technical analysis in the case of full
information, let us assume henceforth that the technical analyst does not
know E;(R¢41) but has a history of observations of P; on the basis of which
he must decide his optimal action at time ¢. This is a similar amount
of information to that possessed by econometricians and hence a technical
analyst learning his optimal actions in this environment can be modeled
as an artificial intelligent agent in the sense of Sargent (1993) or Marimon
et al. (1990). In this section, we will propose a ‘reasonable’ model for how a
Technical Analyst might try to learn his optimal actions. The term Artificial
Technical Analyst will refer to an agent who attempts to make the decisions
of a Technical Analyst but who is equipped with an explicit ‘reasonable’
mechanism for learning optimal actions rather than rational expectations.

1.3.1 Parametrising Analysts’ learning

Typically, the learning technique of an artificial agent is similar to that of
an econometrician. In the context of this paper, the agent might learn the
solution to (1.4) by selecting a forecasting model for Ey(R;+1) from some
parametric class (e.g. GARCH-M). This selection is typically made accord-
ing to some standard statistical estimation method such as least squares
or quasi-maximum likelihood. The artificial adaptive agent then chooses an
action which would be optimal if E;(R:41) were in fact what the forecasting
model predicts.
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Whilst for some applications this may be a useful approach, we are forced
to depart from this methodology somewhat due to the fact that there is sig-
nificant empirical evidence that statistical fitness criteria can be misleading
when applied to decision problems such as that of the Technical Analyst.
For example, Kandel & Stambaugh (1996) show that statistical fitness crite-
ria are not necessarily good guides for whether a regression model is useful
to a rational (Bayesian) investor. Taylor (1994) finds that trading based on
a channel trading rule outperforms a trading rule based on ARIMA fore-
casts chosen to minimise in-sample least squares because the former is able
to predict sign changes more effectively than the latter.* More generally,
Leitch & Tanner (1991) show that standard measures of predictor perfor-
mance are bad guides for the ability of a predictor to discern sign changes
of the underlying variable.’

These empirical considerations suggest that any reasonable model of an-
alysts’ learning must take his loss function into account. One way to achieve
this would be to create a Bayesian Artificial Technical Analyst but this would
require specification of a prior on the conditional distribution of returns
which might be very difficult. Instead, we confine the Artificial Technical
Analyst to a frequentist perspective and calculate an estimator d for the
trading rule solving (2.3) given a specified technical trading rule class D.
This can be viewed as a decision theoretic approach in that learning about
the underlying stochastic environment is replaced with the task of learning
about the optimal decision.’

One convenient estimator of the solution to (1.4) is given by the solution
to the following simple in-sample analogue to (1.4):

1Under some assumptions on the underlying processes, the technical analyst is inter-
ested primarily in the sign of R;41 rather than in its actual value. In particular, the
value of Ry41 is irrelevant for his decision problem if sign(R¢41) is known with certainty.
More generally, we will show in Chapter 2 that what matters is the prediction of a certain
quantile of the distribution of sign (R¢4+1). Satchell & Timmermann (1995) show that,
without severe restrictions on the underlying series, least square metrics are not directly
related to sign-based metrics.

® A number of studies of technical trading implicitly or explicitly assume away the possi-
bility that there exists a non-monotonic relationship between the accuracy of a prediction
in terms of a metric based on least squares and a metric based on the profit maximisa-
tion. Examples are Allen & Taylor (1990), Curcio & Goodhart (1991) and Arthur et al.
(1996) who reward agents in an artificial stockmarket according to traditional measures
of predictive accuracy. When the assumption is made explicit its significance is usually
relegated to a footnote, as in Allen & Taylor (1990), fn. p.58, “our analysis has been
conducted entirely in terms of the accuracy of chartist forecasts and not in terms of their
profitability or ‘economic value’ although one would expect a close correlation between the
two”. As we have argued however, the preceding statement is unfounded and results of
such studies should be interpreted with caution.

SBrandt (1999) recently proposed a related approach for estimating optimal investment
decisions but which is applicable only to risk-averse agents since it relies on non-parametric
estimation of smooth first order conditions.
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Igleaé( Ef;tlme(P’“ C) ) RiJrlv (15)
where B is some parameter space determining the choice set of technical
trading rules. If

igt,—l

m 1=t—m

D(Pi,c)Riy1
converges uniformly to
E{D(Py,c) - Ripa}

almost surely as m — oo, under certain regularity conditions’ it is also
the case that the maximum on B of the former expression converges to
the maximum of the latter almost surely as m — oo, so this estimator is
consistent.

Next we choose D so as to impose some restrictions on the solution to
(1.5) that allow regularities of the in-sample period to be captured. Having
no theory to guide us on how to make this choice it is reasonable to use
empirically observed rule classes D°. We may therefore define an Artificial
Technical Analyst as follows:

Definition 1.5 An Artificial Technical Analyst is an agent who solves:

max X1 DO(Py,¢)Ris1, (1.6)

ccB 1=t—m

where D° is an empirically observed trading rule class.

Turn now to an example illustrating the mechanics of this agent which
will be useful in subsequent sections.

Example: Choices of the Artificial Technical Analyst determine
the optimal Moving Average rule.

The moving average rule class is one of the most popular rule classes used by
technical analysts and has appeared in most published studies of technical
analysis. For these reasons, we will use it to illustrate how an Artificial
Technical Analyst might operate if this is the set from which he chooses
rules. Let us begin with a definition® of this class:

T Assumptions 4.2-4.3 of Chapter 4 are such conditions.

8 As defined, the moving average class is a slightly restricted version of what Brock et
al. (1991, 1992) refer to as the “variable length moving average class” (in particular, the
restriction arises from the fact that the short moving average is restricted to have length

1).
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Definition 1.6 The Moving Average technical trading rule class MA(P;, c;)
is an (empirically observed) technical trading rule class such that:

Lif P> (14 ¢)Zoelt=
MAP;, )= | 0if (1-¢)2=0= < b < (14 ¢)Zel=t | (1.7)

i < (1 gy S

where Py = [Py, Pi_1, ..., Pi_n],

c= (m, )

B={M,a},

M = {1,2,..M} is the ‘memory’ of the rule,

O ={¢:0< ¢ <D} is the ‘filter” (or bandwidth) of the rule.

Now if D® = MA(Py,c), (1.6) becomes:

1 ATA(P, .
pdax Sl W MA®P;,m, ¢) R (1.8)

An Artificial Technical Analyst learning technical trading rules by solv-
ing (1.8) uses N daily observations of M A(P;, m,¢$)R;;1 derived from N +
M +1 observations of prices P;. Let us assume M = 200 (a ‘standard’ value
for the longest moving average of interest), N = 250 (approximately a year’s
worth of data is used for estimation), that s = [ = 1 (position size cannot
exceed current wealth) and ® = 0.02 (another ‘standard’). How do the
trading rules used by this Artificial Technical Analyst behave when Py are
draws from the Dow Jones Industrial Average index? Figure 1.1 plots the
parameters (m, ¢) indexing trading rules estimated according this method?,

where the parameters were estimated using a daily rolling recursion from
t=1/6/1962 to 31/12/1986.1

99 was discretised to @ = {0,0.005,0.01,0.015,0.02} . This discretisation allowed us to
solve (7) by trying all dim(IN) -dim(®) = 1000 points composing the solution space in each
of the 6157 recursions. More sophisticated search methods could lead to more intelligent
Artificial Technical Analysts but such niceties do not seem necessary when D° is as narrow
as it is in this example.

10T his data corresponds to the third subperiod used by Brock et al. and to most of the
data used by Gencay (1996).



1.4. DISTRIBUTION OF RETURNS 11
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Figure 1.1. Evolution of estimated parameters m and % respectively, for 6157
daily observations of the DJTA index.

The sharp discontinuities observed in the sequence of estimated param-
eters suggests that the very different rules have similar performance; this
coupled with sampling uncertainty or non-stationarity in the series might
be sufficient to produce the observed behaviour. They also strongly suggest
there is additional structure in the series which a ‘more intelligent’ Artifi-
cial Technical Analyst (one with a more sophisticated learning mechanism)
might be able to identify. For example, some method (e.g. an averaging
rule) for reducing the impact of sampling uncertainty might be helpful

1.4 Artificial Technical Analysts and the distribu-
tion of returns in financial markets.

Much of the literature on technical trading rules has asked whether popular
types of rules will yield returns in excess of what would be expected under
some null hypothesis on the distribution of returns (e.g. Brock et al. 1992,
Levich & Thomas 1993, Neftci 1991, etc.). By answering this question in
the affirmative, it has been possible to reject these hypotheses; the perfor-
mance of trading rules thus serves as an interesting type of specification
test. The rules considered are typically selections that are meant to be ‘rep-
resentative’ for a plausible and widely used rule class. However, the fact
that they are chosen according to non-rigorous and often implicit criteria
makes results drawn from them subject to standard data-mining criticisms
which diminish their forcefulness. This is a problem that is avoided if the
rules considered are the choices of an Artificial Technical Analyst which are
by construction explicit and can be expected to be robust with respect to
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reasonable variations in the agent’s design.!' In Section 4.1 we show with
reference to the study of Brock et al. that such criticisms are not trivial.
In Section 4.2 we show that the Artificial Technical Analyst can be used to
construct more powerful tests of hypotheses regarding the correct specifica-
tion of models for returns. This is because the Artificial Technical Analyst is
good at recognising regularities in the series that are usually not the primary
focus of attention - though they often should be since they affect decisions
and hence have an important economic interpretation.

1.4.1 The variation of returns across rules

Clearly, we must rely on empirical evidence to see whether rule returns
are correlated closely enough within a class to justify using a few rules as
proxies for the behaviour of the class as a whole.!? Figure 1.2 below shows
the returns accruing to each rule belonging to the moving average class if it
were applied on the DJIA index throughout the period considered (1962 -
mid 1986).

L Of course, a degree of arbitrariness remains in our selection of the rule class to be
tested. However, we have already mentioned that there exists much stronger empirical
evidence on the basis of which to choose a rule class than for any specific rule. The arbi-
trariness involved in the specification of learning schemes may be an additional problem,
but overall such choices are generally considered to be robust in other applications (e.g.
econometrics) and are certainly more robust than choices of arbitrary rules. Of course,
such robustness claims can only be evaluated empirically; in the Appendix we provide
‘Auxiliary Results’ that indicate the Artificial Technical Analyst we work with in this
paper is indeed robust.

"2 That this is the case is suggested by Brock et al, who write that ‘Recent results in
LeBaron (1990) [now available in LeBaron (19980)] for foreign exchange markets suggest
that the results are not sensitive to the actual lengths of the rules used. We have replicated
some of those results for the Dow indexz’, p1734, fn. The “recent results” to which Brock
et al. refer are a plot of a certain statistic of 10 rules. Apart from the fact that 10 rules
constitute a small sample, the minimum statistic is almost half the size of the maximum
statistic - so it is not entirely clear that these results support the claim made.

On the other hand, it is hard to criticise the conclusions of Brock et al. since the rules
they chose happened to generate returns which were slightly lower than the average of
the class they considered.
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Figure 1.2. Mean returns (over 6157 periods) of each rule as a function of its
parameters m and ¢.

This figure illustrates the inadequacies of the ad hoc approach whereby
specific rules are used as proxies for the distribution of expected returns of a
whole class. Notice in particular two highly prominent facts evident in this
figure.

Firstly, while all rules earn positive returns, the mean return of the best
rule in the class is 1270 times larger than that of the worst rule. Since
the means are taken from samples with more than 6000 observations, it is
unlikely that sampling uncertainty can account for these differences.'® We
must conclude that returns accruing to rules within the same class vary very
significantly.

Secondly, the expected returns of rules display significant variation even
within local regions of the parameter space. The best rule is the three pe-
riod moving average with no filter M A(3,0) and the worst is the four period
moving average with a 2 percent filter M A(4,0.02). This is important be-
cause most researchers choose to calculate returns for a few rules sampled
evenly from the space of all rules, reflecting the unfounded implicit assump-
tion that rules are ‘locally’ representative, i.e. that parameter choices are
robust.

Taken together these two observations imply that ad hoc rules cannot
be the basis for convincing tests of specifications of models for returns, as
previous studies have suggested. Rules must be selected according to an
explicit procedure (such as that of the Artificial Technical Analyst) which

13 A bootstrap simulation might be used to evaluate this conjecture.
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is justifiable on theoretical grounds.

1.4.2 Artificial Technical Analysts’ rules generate ‘above av-
erage’ profits

We now show that ‘representative’ mean returns are likely to be smaller than
those obtained by an Artificial Technical Analyst and hence will be less infor-
mative about the structure in returns processes. The reason for this is that
a well designed Artificial Technical Analyst who chooses a technical trad-
ing rule from some class should have learned to make a better-than-average
choice of d. Imposing the use of a ‘representative’ rule by an Artificial Tech-
nical Analyst would be the analogue of estimating a parametric model for a
time series by choosing the parameters which have average rather than least
squared errors.

The following table serves to empirically confirm this reasoning. Utilis-
ing some of the information in Table V of Brock, Lakonishok & LeBaron
(1991)** it indicates that the results reported there on the basis of various
fixed rules are much weaker than those which can be drawn by using the
time-varying estimated rule (jt derived in Section 3.1.1. That the rules cho-
sen by Brock et al. are ‘average’ across the space of all rules can be verified
by inspection of their position in Figure 1.2.

In this table, t-ratios are reported for the hypotheses of equality between
unconditional returns and returns conditional on a buy and a sell position
for various types of technical trading rules (if returns are independently
distributed, these differences should be zero). The table indicates that all t-
ratios are much higher for the estimated rule we have developed than for the
simple rules used by Brock et al. This implies that the Artificial Technical
Analyst is ‘better’ at detecting the dependencies in the DJIA series since it
can be used to reject the hypothesis that the returns are independent draws
from some distribution with much greater confidence than that offered by
Brock et al.’s analysis.!> We expect that the Artificial Technical Analyst’s
rule will be equally powerful as a specification test for particular models for
the time dependency in returns, such as those considered by Brock etal.
(AR, GARCH-M, EGARCH). However, we must leave confirmation of this
conjecture for future research.

As we have already mentioned, it is inevitable that the creation of an
Artificial Technical Analyst involves certain design decisions which them-
selves raise data-mining issues. We have noted however that such an agent
is likely to be robust with respect to such decisions. Furthermore, there is
often a very natural way to make these decisions in the context of a specific

" Note that Brock et al. (1992) reproduce only a part of this table.

15The table also contains information which is sufficient to show that the Cumby &
Modest (1987) test for market timing would, if the riskless interest rate were zero, confirm
the ability of a technical analyst learning optimal rules to conduct market timing.
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Table 1.1: The first column of this table indicates which rule is being used. The
parameters in parentheses constitute specifications of the memory and filter of the
moving average rule used. The second and third columns indicate the number of
days in which the rule was long or short respectively and the fourth and fifth the
mean return on those days. The sixth column reports the proportion of days on
which the rules made profits conditional being long and the seventh column provides
a similar statistic for days when they were short. T-statistics applying a test used
in Brock et al. to check significance are provided for some estimates.

application. Here for example we have avoided most problems of this form
by anchoring our selection of the trading rule class and the data set to the
set of Brock et al.'® Whilst the selection of the length of the optimisation
period N is still under our control we set N = 250 on the a prior: basis that
it is the standard rounded approximation to the number of trading days in
a year. In the Appendix we replicate some of our results for other values of
N and thereby provide evidence that this choice has only a marginal effect
on our results.!”

In summary, the Artificial Technical Analyst provides a powerful and
robust tool for examining the empirical properties of technical trading rules;

160Of course, that also means we inherit whatever data-mining criticisms may be levied
on Brock et al. The results of Sullivan et al. (1999) suggest these may be substantial.

17This is hardly surprising given that this parameter operates exactly like the choice
of sample size in a recursively estimated econometric model (which also does not usually
affect results if - as in this case - it is reasonably large).

Rule N(buy) N(sell) Buy Sell Buy>0 Sell>0 buy-sell
Always long 6157 0 0.00023 - - - -
Brock et al
(mtv ¢t)
(50,0) 3468 2636 0.00036  -0.0004 0.5167  0.4879 0.00041
(0.90076) (-1.16108) (1.78607)
(50,0.01) 2782 1985 0.00053  0.00003 0.5230  0.4861 0.00049
(1.64014) (-0.70959) (1.89872)
(150,0) 3581 2424 0.00037  -0.00012  0.5205 0.4777 0.00049
(0.94029) (-1.49333) (2.11283)
(150,0.01) 3292 2147 0.00035  -0.00018  0.5216 0.4742 0.00052
(0.80174) (-1.67583) (2.13824)
(200,0) 3704 2251 0.00037  -0.00016  0.5173  0.4780 0.00053
(0.92753)  (-1.64056) (2.23379)
(200,0.01) 3469 2049 0.00038  -0.00018  0.5189 0.4763 0.00056
(0.96907)  (-1.66579) (2.26328)
Average 0.00037  -0.00011 0.00048
ATA 3313 2650 0.00095  -0.00067  0.5337 0.4675 0.00162
{d(m}, ¢ 0157 (3.95033)  (-4.57949) (7.34848)
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we therefore propose the use of Artificial Technical Analysts’ rules as the
basis for model specification tests. This decreases the probability of ob-
taining misleading results whilst at the same time delivering more powerful
conclusions relative to those obtainable from an analysis of ‘representative’
rules (which are also difficult to identify).

1.5 Market efficiency and technical trading

It is often stated that ‘If markets are efficient, then (technical) analysis of
past price patterns to predict the future will be useless’, (Malkiel 1992). In
this section, we attempt to analyse the relationship between the efficiency
of markets and the efficacy of technical analysis, with a view to a formal
assessment of this statement.

Currently, only a model-specific notion of efficiency is available, deriving
from successive refinements on the definition of Fama (1970). The latest
element in this sequence of definitions is that of Latham (1986) according
to which a market is E-Efficient (‘E’ for equilibrium) with respect to an
information set if and only if its revelation to all market participants would
leave both equilibrium prices and investment decisions unchanged. However,
there seems to be little consensus as to what empirical properties an efficient
market should display, partly due to the lack of an accepted equilibrium
model for financial markets (LeRoy 1989, Fama 1991). Furthermore, market
efficiency is only testable in the context of such a model.

We now propose a definition of efficiency which has the advantage that
its testability does not hinge on the assumption of a specific equilibrium
model, but rather on a model for the behaviour of at least some agents
in the market. Our definition is a necessary condition for the market to
be E-efficient if we accept any model in which some agents our modeled in
this way. It is also consistent with the weak requirement implicit in almost
all efficiency notions according to which conditioning on publicly available
information does not increase utility. In its very weakest forms, this is
interpreted as meaning that once transaction costs are included, no risk-
averse agent can increase his utility by attempting to ‘time’ (i.e. forecast the
direction of) the market. This statement is so weak that some authors (for
example LeRoy 1989, p.1613 fn.) consider it to be non-testable. However, if
we assume that the time series of prices is the market clearing equilibrium of
an economy with a single risky asset or that we know the market portfolio
and have a time series of prices for it, we show that the performance of
technical trading rules can be used to construct precisely such a test. For
simplicity, the analysis is restricted to the case where the risk-free interest
rate is zero and past prices are the information set with respect to which we
evaluate efficiency (weak-form).

The evaluation of financial market efficiency has an interesting role to
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play in building useful dynamic asset pricing models. There is now a technol-
ogy for determining broad conditions such a model must satisfy in order to be
consistent with a given sample of data (Hansen & Jagannathan 1991, Hansen
& Richard 1987). For some purposes it may be crucial that the model used
also replicates the efficiency properties of actual markets (e.g. when the
model will be used to address issues relating to the role of financial markets
in allocating resources or to evaluate the investment performance of various
types of agents). We can use the results of this section to judge whether
a market is efficient and evaluate whether it is necessary to design models
that replicate this feature. Whilst the relationship between technical analy-
sis, market efficiency and dynamic asset pricing models is interesting, it lies
beyond the scope of this paper and we must leave it for future research.

We will refer to the version of the efficient market hypothesis that we
have alluded to as the Lack of Intertemporal Arbitrage (LIA) Hypothesis
and discuss its implications for technical trading rules. It will become ev-
ident that this efficiency notion is formulated so that it is consistent with
the idea that if technical analysis ‘works’, loosely speaking, then markets
must be inefficient. In this sense it formalises the efficiency notion to which
many empirical analyses of trading rule returns allude, yet typically leave
undefined. A desired property efficiency notions have failed to deliver is a
way of quantifying near efficiency. The following definition of LIA allows
precisely such a quantification.

Definition 1.7 The Lack of Intertemporal Arbitrage (LIA) Hypoth-
ests holds for all investors with objective functions in some space U if their
optimal decisions do not depend on past prices.

The nature of the space U® for which LIA holds can be viewed as a
measure of the efficiency of a market. For example, as it increases, fewer
agents (distinguished by their utility functions) find past prices useful and
hence the market becomes more efficient (with respect to past prices). In
particular if for two markets A and B we know that U§ C U, LIA pro-
vides a well defined sense in which market A is less efficient than B. Such
comparisons are relevant if there exist markets which may be treated as sep-
arate on a priori grounds or if we wish to compare the efficiency of a single
market during different time periods. Of course when neither U§ nor U is
contained in the other, efficiency rankings may be harder, but nevertheless
this definition gives us a language in which we can formalise the concept of
near-efficiency.

Here we focus on the simple allocation decision (1.1) and therefore treat
the space U as a way of imposing restrictions on the form U can take. LIA is
confirmed for a class of agents solving (1.1) if knowledge of past prices does
not affect their optimal actions. This is consistent with the idea that current
prices reflect all information in past prices that might be of relevance. In



18 CHAPTER 1. AN ARTIFICIAL TECHNICAL ANALYST’S VIEW

this case, LIA requires that for U € U, all P; and all W;:

arg g[laxl} E{U W14 aRi1)|Py]} = arg g[laxl} E{U W1+ aRi1)]}-
(1.9)

This is implied by LIA when the only source of available information are
past prices. It may be interesting to consider whether LIA holds when
agents have access to auxiliary sources of information. While this would
be beyond the scope of this paper it would be interesting since it would
allow us to account for sources of predictability such as any publicly known
time-varying risk-premia.

Clearly, LTA imposes restrictions on the joint distribution of returns and
past prices. While it does not require these to be independent, it requires
that knowledge of past prices does not affect an agent’s optimal investment
decision. For example, suppose only the third and higher order moments
of the conditional distribution of returns depend on past prices; then in a
market with mean-variance agents, actions will not be affected by knowledge
of past prices (LIA holds) even though in a market without agents of this
type, they will (LTA does not hold). Our definition implies that market
efficiency is defined with respect to a class of agents and that the size of this
class can therefore be interpreted as a measure of the degree of the market’s
efficiency. Formally, the degree of efficiency is determined by the form of
the space:

arg maXqe[_g ) E{U [Wi(1 + aRey1)] [Py}

U= {U e : = arg maXge[—s,J| E{U Wi(14+aRii1)]}

VP*.(LN)

For a general equilibrium model of returns to be LIA efficient with re-
spect to U® it must be the case that agents with objective functions in U*¢
behave identically whether or not they know P;. A dual way of describing
the degree of LIA efficiency is in terms of the set of distributions Fyy for
which LIA efficiency with respect to U holds. Denoting a joint distribution
of (Rey1,Py) as F, a marginal of R;y1 as Fr and a conditional of returns
on prices as Fg|P, this set is given by:

7y {F . argmaxae_gy [ U [Wi(l + aRyy1)dFR|P]

. VP,UeU \.
= argmaxye[_sy [ U [Wi(l + aRyy1)] dF ! }

(1.11)

To decide empirically whether a market is efficient with respect to a par-
ticular set of objective functions U of interest, we can conduct the following
hypothesis test:

Hy:FeFy (LIA), (1.12)



1.5. MARKET EFFICIENCY AND TECHNICAL TRADING 19

versus,
H1 : F ¢ fu (NOt LIA) (1.13)

As we have already mentioned, we do not interpret a rejection of the null
as an indication that the market cannot be modelled as an equilibrium of
a standard model. Such a rejection would simply provide evidence against
the particular notion of efficiency according to which prices should not be
‘useful’ to any agent (implicit, for example, in Malkiel’s statement with
which we opened this section). As we have discussed, this is a very weak
notion of efficiency which in a well-defined sense is a necessary condition for
E-efficiency.

1.5.1 Technical Trading Rules and LIA

The Artificial Technical Analyst provides a condition on rule re-
turns for testing LIA

If for some market the true joint distribution of returns and the past prices
F* is known, we can check whether LIA holds for utility functions in I/, in
some cases even analytically. 1If F* is unknown, one test of the hypothesis
described by (1.12-1.13) could be based on checking whether an estimated
model for F* is in Fzy. Here we propose an alternative test based on the
implications of the null hypothesis for the returns obtained by an Artificial
Technical Analyst. This approach is based on the fact that a sufficient
condition for LIA to be rejected is that technical trading is preferred over a
position that is optimal when the agent does not condition on the history of
past prices!'®. That this is the case is almost trivial, but is shown formally
below:

Proposition 1.2 Let a* be an investment (as a fraction of wealth) which
maximises an investor’s (unconditional) expected wtility when the (known)
joint distribution of returns and past prices is given by F':

a* = arg ag[l_azcl] / U[Wi(1+aRy1)]dF.

Assume this investor can increase his expected utility by investing this frac-
tion a* according to a trading rule d :

max /U[T/Vt(l +a*d(P;) Ry41)]dF > max /U[Wt(l + a*Ryy1)] dF.

ac[—s,] , ag[-s,l],

18 This is stronger than the condition that the technical trading rule is preferred over
the buy-and-hold strategy because this strategy in addition to not conditioning on prices
does not condition on wealth either.
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Then LIA does not hold, i.e.:
F ¢ Fy.

Proof. See Appendix A. =

We can use our proposition to reject LIA for a class I/ in which U be-
longs by showing that there exists a technical trading rule d with associated
returns Rng such that for all a:

/U [Wt(l +aR;?+1)} dF > /U[Wt(l + aRyy1)] dF, (1.14)
Clearly, markets may be inefficient even when technical trading rules do
not perform well, but we are not concerned with this here.

The Risk-Neutral Case

In order to implement a test of the null hypothesis (1.11), we must specify
U. Let us begin with the very narrow specification requiring ¢/ to contain
only linear functions. Then (1.14) is equivalent to:

E(RE)) > E(Re). (1.15)

We can use the rules {dt}?ff which were optimal for the Artificial Tech-
nical Analyst in Section 3.1.1 and their corresponding returns to test the
null hypothesis for the Dow Jones Industrial Average. Referring to the ta-
ble below, we find that the probability LIA is not rejected is extremely low.

Returns Mean St. Dev. Probability under Null
Always long | 0.0002334 0.008459 -
ATA 0.000801  0.008335 8.887e-5

Table 1.2: Note that the last column was calculated conditional on the (false)
assumption that returns of rules were normal i.i.d.

Hence we can conclude with great confidence that conditioning on past
prices is desirable (LIA is rejected) for risk-neutral agents investing in the
market for the DJIA index. The set U¢ of utility functions with respect to
which the market is efficient (in the LIA) sense cannot include any linear
functions.

The Mean-Variance Case

Let us now consider whether the market is efficient with respect to quadratic
utility functions. This may be the case if rules satisfying (1.15) involve a
sufficiently larger variance than market returns to make them less desirable
to a mean-variance agent. For example, LeRoy (1989) argues that:
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...even though the existence of serial dependence in condi-
tional expected returns implies that different formulas for trading
bonds and stock will generate different expected returns, because
of risk, these alternative trading rules are utility-decreasing rel-
ative to the optimal buy-and-hold strategies.

To check whether this is the case, consider the class of quadratic utility
functions

—b
{U:U(W):aW2+bW+c,a§O,%EW}.

For all U in this class, if wealth W is a random variable, it is the case that
EU(W) is increasing w.r.t. E(W), and decreasing w.r.t Var(W).

The following proposition shows the somewhat surprising result that if
there exists a rule that mean-dominates a long position, then it will also
variance dominate it and hence LeRoy’s statement is a logical impossibility
in rather general circumstances. The proposition is crucial because it estab-
lishes broad circumstances in which the mean-variance case collapses to the
risk-neutral case.

Proposition 1.3 If the trading rule dy leads to a larger expected return than
another rule do with positive expected returns, i.e.

E(dy (Py) Ri1) > E(dg (Pt) Rev1) > 0,

and:
(a) The second rule is always long (i.e. is the ‘Buy and Hold’ strategy)
and long positions are not smaller in absolute value than short positions

da (Py)
)

[ all Py,

S

\Y

7

or
(b) Trading rules have a binary structure and position sizes are symmet-
ric

deQ S {—S, l} R

[ = s,

Then the returns from rule 1 have a smaller variance than the returns from
rule 2

V(dl (Pt) Rt+1) < V(dg (Pt) Rt+1).
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Proof. See Appendix. m

This Proposition is useful for establishing the following corollary, but
also because it provides a shortcut to ranking rules by performance in terms
of Sharpe Ratios - an exercise attempted by many researchers and practi-
tioners, supposedly as an alternative to ranking by mean returns. In the cir-
cumstances indicated however, Sharpe Ratios are inversely related to mean
returns and such exercises are often redundant.

Corollary 1.1 Consider a market in which the unconditional expected re-
turns are positive (E (Ri11) > 0). Suppose agents solving (1.1) have a tighter
constraint on short positions than long positions (I > s). Suppose also that
(1.15) holds so the market is not LIA-efficient for risk neutral agents. Then
it will also not be LIA-efficient for mean-variance agents.

Proof. See Appendix. m

Under the very plausible conditions'? of this corollary the risk-neutral
case implies the mean-variance case and therefore mean-variance investors
in the DJIA would find knowledge of past prices useful. Indeed, note that
Table 1.2 confirms the implications of this Corollary.

The Risk-Averse Case

It is substantially more complicated to use technical trading rules to pro-
vide evidence that LIA does not hold when U is a concave class of functions.
An exception arises when market and trading rule returns are normally dis-
tributed in which case second order stochastic dominance can be expressed
as a function of means and variances.

Proposition 1.4 Consider a market in which the unconditional returns are
normally distributed with positive mean (E (Ri+1) > 0). Suppose agents
solving (1.1) have a tighter constraint on short positions than long positions
(I > s). Suppose also that (1.15) holds, so the market is not LIA-efficient
for risk neutral agents and furthermore that this is the case for a trading rule
with normally distributed returns. Then it will also not be LIA-efficient for
risk-averse agents.

Proof. See Appendix. m

If the assumptions of Proposition 4 are not satisfied, we can reformulate
the test for LIA in terms of a second order stochastic domination criterion
of trading rule returns over market returns. This is shown in Proposition 5
below:

9But note that these results are only useful in a single risky asset/portfolio setting.
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Proposition 1.5 Let fg, ., ngH be the marginal densities of market and
trading rule returns respectively. Define the function:

M) = [ @) = Fag,, @ (116)

t+4+1
J =00 +

Suppose agents solving (1.1) have a tighter constraint on short positions
than long positions (I > s). If unconditional market returns are positive
(E (Ri11) > 0) and there exists a trading rule such the returns of which are
distributed so that:

M(y) >0V 7,

and M(y) > 0 for at least one y then the market is not LIA-efficient for
any risk-averse agent.

Proof. See Appendix. m

Clearly, if we reject the hypothesis that M () < 0 which is an implication
of LIA, we can also reject LIA. However, the available tests for this hypoth-
esis are not generally applicable or involve huge computational costs (Tolley
& Pope 1988).20 This obstacle forces us to offer only an informal evaluation
of whether LIA can be rejected. Such an evaluation can be conducted by
inspecting a plot of the sample version M (7) of M(v) for the returns of the
Artificial Technical Analyst and the Dow Jones Industrial Average.

-4

X 10

006 0.04 0.02 0 0.02 0.04 g
Figure 1.3: This is M () the sample version of M (7).

Observing Figure 1.3, we notice that for small v, M(v) < 0, indicat-
ing that the minimum returns from the Artificial Technical Analysts’ rule

20 After the completion of this Chapter a new technique appeared (Fisher, Wilson &
Xu 1998) that may in fact resolve this problem.
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resulted in smaller returns than the minimum market return. This implies
that an agent with a utility function which greatly penalizes very low re-
turns would prefer not to use the trading rule. Hence, even without taking
account of sample uncertainty we are unable to reject LIA in the risk-averse
case. Taking sample uncertainty into account using a formal statistical pro-
cedure cannot reverse this result, since it could only weaken the case against
LIA. We conclude that there are risk-averse agents who may be indifferent
to information contained in past prices so Malkiel’s statement can be jus-
tified albeit in a narrow sense: The set of utility functions U¢ with respect
to which the DJIA is efficient does not include any mean-variance utility
functions but includes at least some strictly concave utility functions.

1.5.2 Efficiency with Transaction Costs

We now define LIA for the case where an investor faces proportional sym-
metric transaction costs. In this situation, the set of distributions consistent
with LIA is:

argmaxge(_s g [ U [Wi(l+ agRey1) — ke lag — ag1|] dFg|Py
Fi=F: =arg maXg,e[—s,l] f UWi(1+agRey1) — K lay — ag1]] dF
VP, Uecl
(1.17)

where a_1 is the size of yesterday’s position.

Consider an Artificial Technical Analyst choosing rules to maximise the
type of objective function in (1.17). As before, we let s =1 = 1 and the
Artificial Technical Analyst uses rules given by (compare to (1.8)):

max Y1 [MA(P;,m,¢)Riy1 — k| MAP;,m, ¢) —a; 1|]  (1.18)
meM,ped
where k are proportional transaction costs and a; € {—1,0,1} is the position
at time t. It is important to note that the trading rules used are now a
function of k.

Beginning with a neutral position (at—m—1 = 0), we can obtain the
estimated parameters, estimated trading rules and out-of-sample trading
rule returns RY,; at each date for various levels of proportional transaction
costs k. Our objective will be to find a test statistic which can be used to
reject LIA. With this, we can then determine the level of transaction costs?!
k for which LIA cannot be rejected at the 5% significance level.??

This exercise is conceptually similar to that of Cooper & Kaplanis (1994)
who try to estimate the level of ‘deadweight costs’ that would explain the

2! Note that as defined, the cost of switching from a long to a short position and vice
versa is 2K.

22Tt is important to note that Proposition 1.3 can be extended to the case of transaction
costs if these are small enough. The same is not true for Proposition 1.1 if transaction
costs are proportional.
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home bias in international equity portfolios.?? Notice that allowing for trans-
action costs changes our near-equilibrium notion in that we now seek pairs
{U®, k°} rather than just &€ for which LIA holds.

In Table 1.3 below we have tabulated the returns from a rule used by
the Artificial Technical Analyst solving (1.18). The level of costs k¢ below
which we can reject the hypothesis that F* € F; for U including risk-neutral
or mean-variance utility functions is represented by the line dividing Table
1.3. Notice that this x incorporates the special case of zero transaction costs
which was reported in Table 1.2.

Rules Mean St. Dev. Prob. under Null II%157(1 + RY)
Always long | 0.0002334 0.008459 - 2.378
ATA

k=0 0.000801  0.008335 8.887e-05 110.7
x£=0.0001 0.0007304 0.008328 0.0005109 71.41
xk=0.0002 0.0006911 0.008321 0.001238 95.88
£=0.0003 0.0006196  0.008318 0.00533 35.63
k=0.0004 0.0005508 0.008311 0.01788 22.99
x£=0.0005 0.0004893 0.008305 0.0452 15.44
x£=0.0006 0.0004707 0.00829  0.058 13.67
k=0.0007 0.0003741 0.00828  0.1755 7.101
£=0.0008 0.0003099 0.008273 0.3061 4.456
xk=0.0009 0.0002763 0.008205 0.3876 3.453
k=0.001 0.0002191 0.008215 0.5379 2.13

Table 1.3: The first column indicates which rule isunder consideration. The next
two columns indicate the empirical mean and the standard deviation of the rules’
returns. The fourth column shows the probability (under the assumption of normal
distributions) that the mean returns from a specific rule were smaller or equal to
the mean market returns. The final column shows the cumulative returns from each
strategy during the whole time period.

The x indicates that at the 5% level of significance, LIA will not be
rejected for k > k¢ = 0.06%. The mean return of the optimal rule remains
larger for k < 0.09% (but not for the usual confidence margin).?* These
levels of costs make it tempting to argue that with today’s cost conditions®>
LIA is rejected for a broad class of investors. However, costs were certainly
larger at the beginning of the sample we have considered. How large the

23 More recetly, this approach has been used by Luttmer (1999)

?1Note that Proposition 3a can be extended to the case with transaction costs if these
are “small enough”. Table 3 indicates a mean-variance investor should probably prefer
the ATA’s rule.

25 An investor with access to a discount broker, e.g. via email, can purchase 1000 shares
of a company listed on the NYSE for a $9.95 fee. However, micro-structure frictions such
as bid-ask spreads may be more important.
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decrease in transaction costs has been and how it has affected different types
of investors is a question which is beyond the scope of this paper and which
we do not attempt to answer. It is probably fair to say that few agents
would face transaction costs that were so low during most of the sample.

Bessembinder & Chan (1998) have independently performed a similar
exercise on the same data to find the maximum level of costs for which a
certain investment strategy beats Buy-and-Hold and arrive at a much higher
estimate. This is due to the fact that they allow their strategy to take long
positions double the size of that allowed for what they call the Buy-and-Hold
strategy. Since the strategy is usually long and mean returns in the market
are positive, clearly the strategy does better than Buy-and-Hold but this is
merely a reflection of the larger positions their strategy takes. Their results
are likely to be a lot weaker if their Buy-and-Hold strategy were defined in
a more standard way. They would be even weaker if, as we do here, they
reported results that are statistically significant.

1.5.3 Qualifications and further comments on the results

In this section, we have developed a test of our version of the weak eflicient
market hypothesis based on the profits of an Artificial Technical Analyst.
We have used this test to characterise a broad class of investors (defined
by their preferences and transaction costs) who would find it desirable to
condition on past prices; as long as we believe such investors exist, we should
reject our version of the efficient market hypothesis and hence E-efficiency for
which our version is a necessary condition. Note that there are numerous
asymmetric information models which generate equilibria for which LIA
is rejected (e.g. Hussman (1992), Brown & Jennings (1989), Treynor &
Ferguson (1985)) so some of the available models may describe the data
generating process accurately (at least in this respect).

The methodology proposed is useful because it relates efficiency to a set
of objective functions rather than an equilibrium of some model. Tt allows
efficiency comparisons across time and markets by comparison of the gener-
ality of {U¢,k°} for which LIA is not empirically rejected. It thus provides
a quantifiable measure of near efficiency. Equally importantly, it formalises
a sense in which markets can be characterised as inefficient when empirical
studies find trading rules to be profitable. It therefore formalises the popu-
lar notion of efficiency according to which agents solving simple investment
problems such as (2.1) should not need to condition on past prices (or use
technical trading rules).

The empirical exercise we conduct using the DJIA is intended to illus-
trate the implications of rule efficacy for market efficiency. A more accurate
quantification of market efficiency using the Artificial Technical Analyst
would require data on something closer to the market portfolio than the
DJIA and a relaxation of the assumption that the riskless interest rate is
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zero. We chose to focus on the DJIA data in order to make our results com-
parable to those of other researchers who have used it (Brock et al., Gencay
(1996), Sullivan et al. (1999), Bessembinder & Chan (1998) among others)
and to diminish the susceptibility of our analysis to data-mining criticisms.
However, the use of this data by us and them is unfortunate because the
DJIA is not a traded asset and as such suffers from the complications raised
by non-synchronous trading (Scholes & Williams 1977). Some authors at-
tempt to correct for this (for example by requiring positions to be taken one
day after a signal for them is generated) but there is no corrective procedure
that does not raise other equally serious complications arising from the mi-
crostructure of markets. Further complications also arise from the fact that
transaction costs for the DJTA during 1962-1986 are likely to have varied
and may not even be proportional as we have assumed. Finally, the series
in question is not adjusted for dividends which may bias our results against
LTA.

Use of recent ultra high frequency data for options on market indexes
would probably mitigate many of these problems and should be the subject
of future investigations. Ultimately, the only indisputable empirical analysis
of these issues would require the Artificial Technical Analyst to become Real:
if actual trades based on this agents’ decisions turned out to be profitable,
this would constitute prima facie evidence against the belief that ‘technical
analysis is useless’.

1.6 Conclusions

Utility maximising best responses derived from investment decisions depend
on utility functions, wealth, transaction costs and positions in the market.
Technical trading rules are a class of behavioural rules which impose re-
strictions on the functional form these best response functions may take.
However, these restrictions are only binding for strictly risk-averse investors
and therefore utility maximising investors will typically ‘be’ Technical Ana-
lysts if they are risk-neutral (Proposition 1). Nevertheless, if for some reason
risk-averse agents restrict themselves to the use of technical analysis (e.g.
because more sophisticated investment rules are costly to derive, learn and
implement) we can provide circumstances in which the choices of a Techni-
cal Analyst are also optimal for risk-averse agents in this constrained sense
(Propositions 3, 4 and 5).

Artificial Technical Analysts use past data to choose rules from classes
known to be used in practice. We show in Section 4.2 that the chosen
rules will be more profitable than ad hoc rules used in previous studies (e.g.
Brock et al.) and since they are chosen in a reasonable and robust way, they
are also subject to less serious data-mining criticisms (Section 4.1). Taking
these facts into account, we suggest that bootstrap based model specification
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tests based on rule returns as pioneered by Brock et al. (1992) should be
augmented with artificially intelligent agents in the spirit of Sargent (1993).

In Section 5 we attempt to formalise the idea that the efficacy of techni-
cal analysis and the efficiency of financial markets must be inversely linked.
To do this, we begin with the observation that if the equilibrium of a model
is such that agents would be better off using technical trading rules, then the
equilibrium is not efficient in Latham’s (1986) E-efficiency sense. Using daily
data on the DJIA we characterise a class of agents (defined by preferences
and transaction costs) who find the choices of an Artificial Technical Ana-
lyst valuable. Under appropriate assumptions, the size of this class (which
includes mean-variance agents facing transaction costs lower than 0.06%)
may be interpreted as a measure of the degree of efficiency of the NYSE
(Section 5).

There are many natural extensions of this work so we restrict ourselves to
some indicative suggestions. Firstly, the Artificial Technical Analyst could
be made ‘more intelligent’ by making his learning more sophisticated and by
widening the space of trading rules from which he chooses. For example, it is
possible to extend the information set so that rules can condition on variables
other than past prices (indicating that the Artificial Technical Analyst is
capable even of fundamental analysis!). Secondly, it would be important to
try and find statistical processes describing returns that are consistent with
the Artificial Technical Analyst’s profits. Finally, for applications where
market efficiency is of central relevance, it would be valuable to develop a
way of constructing dynamic asset pricing models which are consistent both
with the data (e.g. Hansen & Richard (1987)) and with the degree of market
inefficiency as quantified by the efficacy of Technical Analysis.
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1.7 Appendixes
Proofs of propositions and Corollaries
Proof of Proposition 1.1. In text. m
Proof of Proposition 1.2. The assumption may be rewritten as:

E{E[UW(1 + a"d(Py) Ri11))[Py]} > EXE[UWi(1 + a” Ry p1)) [P},

which implies that there exists a set Q in R® such that Pr(P; € Q) > 0
and for all P; € Q:

E[UW(1 + a"d(Py)Ri11))[Pe] > EUW(1 4 a*Ryg1)) [Py

Now define:
o { a*d(Py) if P, € Q }

a”* otherwise
Clearly,
EUW(1+a™Rit1)) Py = E[UW(1 +a"Ri1))| P V Py,

and the inequality is strict if Py € Q which means a* cannot be optimal for
the conditional investment decision. m

Proof of Proposition 1.3. Part (a)

Define d; = %di, i=1,2

The assumption implies E(d1Ry1) > E(IRy11) > 0 so

E(ElRt+1) > E(RtJrl) >0

Notice that d; = {—%,O, 1} and by assumption [ > s so (32-)2 <1
Hence (d;Ry.1)? < (RtH)Q
Using the fact that V (z) = E (2?) — E (z)? it follows that:

V (diRyy1) <V (Riy1)
From which it also follows directly that
V(diRis1) <V (Riy)
Part (b)
Define d; = (%) di,i1=1,2
Then the assumption E(dyRi11) > E(daRr1) > 0 implies

E(ElRt+1) > E(EQRpﬂ) >0
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Notice that d; = {—1,1} so (&)2 =1.
Hence (EiRt_,_l)Q = (Rt+1)2, i=1,2
Using the fact that V (z) = E (2?) — E (z)? it follows that:
14 <31Rt+1) <V (EQRt_i_l)
Hence also:
|4 (letJrl) <V (dQRtJrl)

|
Proof of Corrolary 1.1. Ex hypothesi the returns of the trading rule
are larger than the positive market returns:

B(RY,1) > B(Ru) 2 0
So by Proposition 3:
V(RL,) <V(Rp1)
These two inequalities imply also that for any a:

E(W,(1+aR{,1)) > E(W,(1+aRi1))
Var(Wy(1 +aR,)) < Var(Wi(l+aRi1))

which implies that for all mean-variance utility functions U :
EU(Wy(1 +a*R{,1)) > EUWi(1+ a*Rey1))

|

Proof of Proposition 1.4. In normal environments second order
stochastic domination is equivalent to mean-variance domination (Hanoch &
Levy 1969). This together with Proposition 3a yield the desired conclusion.
|

Proof of Proposition 1.5.  As is well known, the assumption on
M (=) is a sufficient condition for:

EU(RY.,) > EU(Ry41) ¥ concave U

Notice now that when E(R;y1) > 0 then the optimal proportion of invested
wealth a* is positive for all wealth levels and so U(Wy(1 4 a*x)) is concave
in x, since:

%U(Wt(ua*m)) = Wia*U >0

2

0 * )2
WU(WI:(]_ +a £IZ')) = (Wta ) U” <0

Therefore it must also be that

EUW,(1+a*R}, ) > EUW(1+a*Ry1))
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Auxiliary Results
Rule N(buy) N(sell) Buy Sell Buy>0 Sell>0 buy-sell
Always long 6157 0 0.00023 - - -
BLL Average 0.00037 -0.00011 0.00048
ATA (N=250) | 3313 2650 0.00095 -0.00067 0.5337 0.4675 0.00162

(3.95033) (-4.57949) (7.34848)

ATA restricted | 3463 2401 0.0005144  -0.00008416 0.5224  0.4794 0.0003221
ATA (N=225) | 3372 2697 0.0009558  -0.0007419 0.538  0.4598  0.0008416
ATA (N=200) | 3374 2703 0.000928 -0.0006966 0.537 0.4632 0.00081

Table 1.4: Compare to Table 1 in the text. We have estimated statistics
for the Artificial Technical Analyst using varying sample sizes (N) and for
a ‘restricted’ space of rules where the Analyst is constrained to choose only
among the six rules of Brock et al. described in Table 1.

We conclude that a wide space of rules from which to choose is important
for the performance of the Artificial Technical Analyst but that the precise
values of N are not (as long as N is large enough for some stability to
exist). These results are unsurprising but we provide them as empirical
confirmation of what we suspected was the case.
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Chapter 2

Risk Neutral Forecasting

SUMMARY

This chapter analyses optimal point forecasting in a simple investment
context. The relation between the conditional distribution of returns and
optimal point forecasts for a risk neutral investor is characterised in detail
and it is shown that any mapping that has the same sign as the conditional
mean of returns is a risk neutral investor’s best predictor. It may therefore
be difficult to model the conditional mean yet easy to model a ‘risk neutral
best predictor’, for which some new methods are proposed. Using a simple
simulation we show that the proposed approach may be better than stan-
dard competitors even in seemingly unfavourable situations. The forecasts
thus obtained have maximal economic value (according to the usual defini-
tion) and are sufficient for the construction of mean-variance optimal binary
investment rules.

2.1 Introduction

The desire to predict returns of financial series is to some extent respon-
sible for the genesis of Economic Science: John Law, Richard Cantillon,
Henry Thornton and David Ricardo developed their interest for economic
systems through their activities as financial speculators.! For reasons that
are obvious, interest in this topic has not waned.?

The objective of this paper is to study Risk Neutral Forecasting - the
forecasting problem of a risk neutral investor in financial markets. Focus on
this agent’s decision problem is motivated by a number of related consider-
ations which are worth examining in some detail.

OAn overview of the results in this paper appear in ‘An Introduction to Risk Neutral
Forecasting’, Abu-Mostafa, Y.S., B. LeBaron, A.W. Lo and A.S. Weigend, 1999, Compu-
tational Finance, MIT Press

!See, for example, Tvede (1997).

?See Campbell, Lo & MacKinlay (1997) for an overview of the state of the art.
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The importance of the risk neutral investor’s forecasting problem

The first reason for which the risk neutral investor’s forecasting problem is
of central importance in analysing optimal forecasts in investment contexts
is that risk-neutral investors are probably the only expected utility max-
imising agents who can act on the basis of a point forecast. For example, a
mean-variance agent will be interested in a joint forecast of both the mean
and variance of a financial asset. More generally, risk averse agents will be
interested in distribution forecasts for returns. We will return to this for-
mally and in more detail in Section 2.2 but for now it should be appreciated
that to the extent that risk neutrality offers a convenient starting point for
understanding how optimal point forecasts for investors differ from ‘generic’
predictors.

Perhaps for related reasons, the loss function corresponding to the risk
neutral decision problem we study has become the standard metric by which
to quantify what is often referred to as the ‘economic value’ of financial
forecasts. For example, Henriksson & Merton (1981) develop a formal mar-
ket timing test for measuring economic value and Leitch & Tanner (1991)
evaluate the forecast performance of professional forecasters according to
this metric. There have also been attempts to quantify the economic value
of financial time-series models (Pesaran & Timmermann 1995, Pesaran &
Timmerman 1998), structural models (Breen et al. 1989), technical trading
rules (Sullivan et al. 1999) and agnostic ‘money-machines’ such as neural
nets (LeBaron 1998a). Risk Neutral Forecasting can therefore also be seen
as the task of formulating forecasts which are optimal in terms of economic
value.

Furthermore, such forecasts can be used to construct binary investment
rules (i.e. decision rules restricting an investor’s choice set to two positions
- usually of opposite sign) that are optimal for a wide class of agents. In-
vestment rules with this structure, including technical trading rules (Brock
et al. 1992) and market timing rules (Henriksson & Merton 1981) have re-
ceived extensive attention in the literature, perhaps because they represent
a boundedly rational mode of behaviour which not only results in a consid-
erable simplification of investment decisions but is also empirically observed.
These rules simplify decisions by allowing a broad class of agents to reduce
their decision problem to a problem of Risk Neutral Forecasting. This oc-
curs because of a remarkable property of binary investment rules ensuring
that the rule which maximizes expected profits also minimizes the variance
of profits (see Proposition 3, Chapter 1). Hence, the same rule is optimal
for all mean-variance agents and they will take positions identical to those
of a risk neutral investor. That binary investment rules can provide useful
information for risk averse agents is a robust fact that has been shown to
hold in general settings (Merton 1981).

More generally, good Risk Neutral Forecasting models can serve as nor-
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mative models of how a restricted class of agents should estimate forecasts
for returns. Indeed, there is some evidence suggesting that certain institu-
tional investors and some individuals who invest a small proportion of their
wealth behave in a fashion well approximated by risk neutrality. Further-
more, these techniques also serve as positive models of how agents do learn
to forecast which in certain cases may be very useful.®> However, since funds
invested according to an approximately risk neutral objective function con-
stitute a fairly small proportion of total invested funds, a positive model of
this form is probably of limited interest.

Finally, an important, complicated and often neglected issue in produc-
ing good parametric model based forecasts for expected utility maximisers
is accounting for parameter uncertainty (e.g. Barberis (1999)). This is par-
ticularly challenging in non-Bayesian frameworks which are the norm for
modelling relatively high frequency financial series (for a review of available
methods, see Bjornstad (1990)). While it may be unsurprising, it is cer-
tainly convenient that in some cases the investors’ risk neutrality renders
parameter uncertainty issues irrelevant.

In sum, the risk neutral forecasting problem should be viewed as an
extremely convenient benchmark that is nevertheless interesting per se.

Organisation of chapter

In Section 2 we introduce the risk neutral investment decision and formalise
the associated optimal predictors, which are the target of models for Risk
Neutral Forecasting. In Section 3 we thoroughly characterise the relationship
between optimal risk neutral forecasts and the conditional distribution of
returns. In particular, we develop relations with the conditional mean of
returns and with conditional quantiles of the sign of returns. Mappings the
sign of which is the same as the sign of the conditional mean of returns are
optimal forecasts for the risk neutral investor.

This is exploited in Section 4 where we discuss how Risk Neutral Fore-
casting models might be developed. Given that in applied financial forecast-
ing misspecified models are a fact of life, we would like to adopt a modelling
strategy that is robust with respect to misspecification. We therefore adopt
a pseudo optimal modelling strategy (Skouras 2000) since pseudo optimal
models have a number of desirable properties for expected utility maximisers
using potentially misspecified models. In particular, they may be optimal
even when the model is substantially misspecified and when this is not the
case, they will be the best model in the class in an average sense. This paper
is the first to apply a pseudo optimal modelling approach to a substantive
problem.

#See Marimon (1996) and Sargent (1993) for a discussion of the scope of learning models
in Economics.



36 CHAPTER 2. RISK NEUTRAL FORECASTING

It is also shown that a consistent estimator for a pseudo optimal Risk
Neutral Forecasting model is provided by an estimator (discussed in detail
in Chapter 4) for the sign of a conditional mean. This estimator is a sam-
ple analog of an unconditional version of the investors’ objective function
- hence is closely related to the idea of estimating models according to the
‘relevant loss function’ (Weiss 1996). While it has been argued that such
estimators are ‘good’,! neither theoretical nor empirical justifications have
not been forthcoming. In this paper, we provide reasons for which such esti-
mators may be good in the context of the Risk Neutral Forecasting problem.
Furthermore, simulation evidence is provided in a study that compares the
relative performance of the proposed estimator to a maximum likelihood
estimator.

Section 5 concludes; an Appendix follows, containing proofs of certain
propositions.

2.2 Prediction and Investments

2.2.1 Best prediction of returns

Returns R;11 to holding a financial asset from the current period ¢ to £+ 1
may be described as:

Ripn = pr(Xe) + U (2.1)
E(Umlz) = 0,

where X; is a random variable with realisations z in X C R¥ | fp X — Ris
a possibly non-linear function, U;41 is a scalar disturbance term and E (x| X;)
is the expectation function of a random variable conditional on realisations
of Xt.

The objective of any forecaster of Ry; observing (only) events in X
can be formalised as the determination of the functional form of a ‘best
predictor’ of Ry 1 conditional on X, i.e. of a function which minimises the
forecasters’ expected loss when used in her decision problem.

Definition 2.1 A best predictor is a mapping p : X — R that satisfies
forallx e X:

p(z) € arg_min / L(Res1,Fin1)dFr, | (2.2)
ri+1€R

where Fg, . |x is the cumulative distribution function of Ry conditional on

X =z and L : R? — R is a loss function which for each realisation of Ry,

assigns a loss at t + 1 to a prediction Ty q (al time t) for Ryyq.

'To quote Granger (1993) ‘“if we believe that a particular criterion... should be used
to evaluate forecasts then it should also be used at the estimation stage of the modelling
process’.
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Obviously the behaviour of the set of solutions to (2.2) will depend
strongly on the choice of loss function (for examples illustrating this de-
pendence, see Christofferson & Diebold (1996)). When the context in which
forecasts will be used is unknown, the convention is to allow certain ‘stan-
dard’ measures of location such as the conditional mean or median to be
interpreted as forecasts. Standard forecasts may be ‘good’ predictors for
some class of loss functions (if they satisfy some robustness property”), but
will be best only for a very restricted class of loss functions.’

2.2.2 Prediction of returns in the context of a simple invest-
ment decision

Consider the simple one period cash-single asset allocation decision condi-
tional on X; = x:

max E{UWi11)|x} (2.3)

ac[—s,]

st. Wipr = aWi(l+ Req) + (1 — a)Ws

where a (the fraction of wealth W, invested in the asset) is constrained to be
finite valued to capture (binding) borrowing and short-selling constraints. It
is worth noting that while we abstract from these issues here, proportionate
transaction costs and a riskless asset can easily be accommodated in the
Risk Neutral Forecasting problem (see Chapter 4, Section 4.2).

A necessary condition for the ezistence of a best predictor corresponding
to this investment decision problem is that the solution of (2.3) may be de-
scribed as an action rule a : R — [—s,!] mapping predictions 741 for Reyq
to optimal investments, expressed as fractions of wealth. The reason for this
is that a (x) must be used to construct a loss function L - without which
a best predictor cannot be defined. However, it is well known that unless
restrictive assumptions are imposed on expected utility, (point) forecasts for
returns do not provide sufficient information for utility maximising invest-
ment behaviour (the solution to (2.3) cannot be described by a mapping
such as a (*)) so such a loss function does not exist and therefore (point)
forecasting is not well defined. Indeed, this observation is at least in part
responsible for the direction of recent research effort towards conditional
distribution forecasting (Diebold, Hahn & Tay 1999, Diebold, Gunther &
Tay 1998, Hansen 1994).

Appropriate assumptions on {U, Fg, .|} and on the investor’s knowl-
edge of Fg,, |z can ensure that a forecast 711 summarises the information

"But Geisel & Zellner (1968) and Zellner (1973)argue that such robustness properties
are unlikely.

“These measures of location are best predictors for appropriately chosen loss functions.
In particular, the aforementioned examples are optimal for squared error L(ryj1,T¢ 1) =
(re41 — Teg1)? and absolute error loss functions L(rq1,7eq1) = |rep1 — Tepa| respectively.
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necessary for utility maximising investors to solve (2.3). In particular, if
investors know certain carefully chosen properties of F'g, |z but not its
mean” point forecasts are sufficient for utility maximisation and the opti-
mal investment can be described by a function a (x) (which in some cases can
even be determined analytically®). However, such assumptions are highly
artificial not only because they impose very arbitrary restrictions on what
the investor knows, but also because extreme assumptions on Fp, |z are
required. On the other hand, if an investor is risk neutral such artificial as-
sumptions are unnecessary because her decision will depend only on highly
restricted features of the behaviour of Fg,, |z. By restricting the class of
utility functions we are interested in to this narrow case, we are able to de-
termine a (*) without making any assumptions on Fpg,,, |2 or the investor’s
knowledge of it.” We will focus on this case and therefore maintain the
following assumption throughout:

Assumption 2.1 Investors are risk-neutral, i.e. U (W) = 3, + B, W.

All obvious time subscripts will henceforth be ignored.

2.2.3 Best prediction of returns by a risk neutral investor
Risk Neutral Best Predictors

A necessary and sufficient condition for a () to be a function solving (2.3)
when U (W) = 3, + B,W is that for all 2 :

a(x) = (l+s)-I[E(R|x)] —s (2.4)

where 1 is a sign indicator function taking the value 1 if the value in brackets
is positive and 0 otherwise. We make the natural assumption that the risk
neutral investor uses Bayes’ rules with respect to her forecasts. If the risk
neutral investor’s forecast for R is 7 she will take a position given by:

a™)=U+s)-Ir]—s

"For example, under standard assumptions making utility a function of the conditional
mean and variance, it is sufficient that the conditional variance is known. Analogously,
West et al. (1993) derive a loss function for predictions of the conditional variance of
returns by assuming mean-variance utility and that the conditional mean is known.

*See Campbell & Viceira (1999) for example.

9An alternative would be to depart from the objective of predicting returns and to
focus instead on direct prediction of the optimal decision mapping using a non-parametric
estimation technique (see e.g. Brandt (1999)). Brandt’s (1999) approach which relies
on estimation of solutions to Euler equations is not applicable for a risk neutral investor
because the solution to the decision problem of interest does not satisfy a first order
condition.
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In this case, her loss is the difference between the utility (at time ¢+ 1) of a
correct forecast and that obtained given that the forecast is 7. This loss is
a random function given by:

LR = ((I+s)-I[R]-s)R (2.5)
(1 +s)-I[f]—s)R

As is evident from the definition of a best predictor (2.2), a loss function
can be replaced with any increasing linear transformation without affecting
the set of best predictors. We may multiply and subtract positive constants
to obtain a simpler equivalent loss function:

L(R,7?) = —R-I[f] (2.6)

Evidently, the borrowing and short-selling constraints of a risk neutral
agent solving (2.3) do not influence her loss function in a way that affects
optimal prediction (as long as they are finite). We may therefore use the
more succinct loss function associated with an agent completely unable to
borrow (I = 1) or short-sell (s = 0) to characterise best predictors of all
risk neutral agents solving (2.3). Such predictors are called risk neutral best
predictors.

Definition 2.2 A risk neutral best predictor'’ (RNBP) is a mapping
p: X — R satisfying:

p(x) € arg;niq—/R-I[?] dFglz, v € X (2.7)

reR

2.3 Relation of risk neutral best predictors to the
conditional distribution of returns

In this section we derive some properties of RNBPs that can be used to
relate them to more familiar predictors.

2.3.1 RNBPs and the conditional mean of returns.

Simple manipulations of a risk neutral best predictor’s definition formalise
its relation to the conditional mean of returns. The following proposition
shows that any predictor of returns with the same sign as the conditional
mean will be best for a risk neutral investor. This is intuitive since this
agent’s action only depends on the sign of the conditional mean and hence
such a prediction will always lead to optimal actions.

10For reasons that will become obvious, we will sometimes refer to this as an ez post
risk neutral best predictor.
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Proposition 2.1 A mapping p : X — R is a risk neutral best predictor if
and only if:

(a) It satisfies:
p(z) € argmin —pp (2) - I[7], z € X (2.8)
re

Equivalently,

(b) It is a sign-preserving transformation of the conditional mean,
i.e. it satisfies:

p(@) =7 (pg (), x € X

for somet e T={r:7(y) >0y >0}

Proof. (a) The definition of a risk neutral best predictor (2.7) is equiv-
alent to (2.8).

(b) The set of solutions to (2.8) is the set of functions {7 (ug) : 7 € T}.
Since, by definition, p is in this solution set, our conclusion follows immedi-
ately. m

Proposition 1(a) states the trivial fact that the conditional mean pup (x)
is a RNBP, which is not surprising since it is obvious from (2.4) that risk neu-
tral investors can make optimal decisions on the basis of conditional means.
A little less obvious is part (b) according to which any sign-preserving trans-
formation of e (x) is also a RNBP. The importance of this derives from the
fact that the space of functions included in T is large,'! as illustrated in
Figure 2.1. Hence it may be that while pp (x)displays irregular features
which make it difficult to estimate (for example, it may have discontinu-
ities or may be changing over time), there is a 7 € T such that 7 (up (*))
is regular (e.g. continuous and constant over time) and therefore easy to
estimate accurately. In this case, the risk neutral investor can potentially
estimate a best predictor even when it is impossible in practice to estimate
the conditional mean.

H'Manski (19885, p.737) provides a characterisation of a small but important subset of
T.
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Figure 2.1 Some sign preserving transforms

2.3.2 RNBPs and the conditional distribution of the sign of
returns.

Rather than thinking of 7 as a prediction for R one may also think of (an
indicator of) the sign of the prediction Iz = I[r] as a prediction for (an
indicator of) the sign of returns Ir = I[R]. This interpretation can be
useful as long as the relationship between the sign of the RNBP and the
distribution of the sign of returns is understood.

In the first instance one might think that the sign of the RNBP is a
forecast which maximises the probability of correctly forecasting the sign of
returns (for example, the market timing test of Henriksson & Merton (1981)
measures investors’ forecasting ability according to this metric). However,
this is not the case: A predictor that does not maximise the probability of
correctly forecasting the sign of returns but which is good at predicting this
sign when ‘the stakes are high’ will be preferred by a risk neutral investor.
It is easy to show that the condition that the mean and median of Fg|x
have different signs is necessary and sufficient for a forecast maximising the
probability of a correct sign to lead to wrong decisions.

Example 2.1 Suppose R is a discrete random variable such that Pr (R =0.1) =
0.2, Pr(R = —0.001) = 0.8. A positive constant 71 is a risk neutral best
predictor by Proposition 1, since E(R) = 0.0192 > 0. Consider now the
prediction 7y < 0. This has an 80% probability of correctly forecasting the
sign of returns but it induces a risk neutral investor to be short and hence
incur expected losses. On the other hand, a predictionT > 0 has only a 20%
chance of getting the sign right but results in a long position and expected

profits.
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It is therefore clear that the risk neutral best predictor makes a compro-
mise between correctly predicting the sign of returns and maximising the
relative magnitude of returns when they are right compared to when they
are wrong. The following proposition formalises this trade-off.

Proposition 2.2 Define A: X — [0,1] as:

E(R||Ig = 1,2)
A = X 2.
() E(RIg=12+E(R|Iz=0,2) "€ (2.9)

A mapping p: X — R is a risk neutral best predictor if and only if:

p(x) € arggg]iRr} —I[r]-(A(x) —Pr(Ip=0|z)), € X (2.10)
T
Proof. See Appendix A. =
Proposition 2.2 reveals the relationship between the best predictor and
the conditional distribution of the sign of returns (the binary random vari-
able I). One may think of A as a measure of the magnitude of returns
when they are positive (|R||Igr = 1) in relation to their magnitude when
they are negative (|R||Ir = 0). The proposition implies that if the distri-
bution of R is sufficiently skewed towards the right, then the risk neutral
investor should be long even if Pr (I = 0|z) > 0.5 and A quantifies what
is sufficient in relation to Pr(Ip = 0|z). Another way of expressing the re-
lation between the c.d.f. of the sign of returns and RNBPs is provided by
Proposition 3, showing that Iz must be a particular (determined by A (x))
non-constant conditional quantile of Ip.

Proposition 2.3 Let Qq (x) be the a’th quantile of Ir|z so that:

Quo(x)= min (:Pr(lp <(|z)>a, x€X (2.11)
¢elo.]

Let Q4 (x) be the A(x)’th quantile of Ir|x so that:

Qa(x)= min (:Pr(Ig<(|z)>A(x), z€ X (2.12)
¢efo,1]

A mapping p: X — R is a RNBP if and only if:
Qa(x) =I[p(x)],x e X
i.e. it is positive if and only if the A (X)’th quantile of Ig|x is 1.
Proof. From the c.d.f. of Iy it is easy to verify that :

le A(x)>Pr(lp=0)
QA(“"):{ O@A(x)gPr(]I;:O) }’“X
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It follows from Proposition 2 that:

le A(x) >Pr(lp=0)
@l ={ LA T b

Combining these facts we obtain the desired result. =

As simple as this proposition may be, it is somewhat surprising that
the risk neutral best prediction problem is equivalent to determining a non-
constant quantile of the sign of returns (depending on the realisation of
X). Another way of thinking about this is that the sign of the RNBP
minimises a lin-lin loss function with slopes determined by A (z). This fact
can considerably simplify the problem of best prediction when it is believed
that the DGP displays certain properties. Here is an example of such a case.

Example 2.2 Suppose it has been established that Fr|x is such that for all
x

E(R||In = 1,2) = E(|R| I = 0,2).

Then A(x) = § for all & and hence Q 4 (x) is the median of Fr,|x. Knowl-
edge of the median of the conditional distribution of the sign of returns is
sufficient for a risk neutral investor to make her optimal decisions.'”

It may be instructive to think intuitively about the degree to which the
behaviour of Fr|x must be known in order to obtain the risk neutral best
predictor. Assuming that A (x) is known, a lower bound is provided by the
conditional quantiles @, (*) of the sign of returns over the range of A (x):
without this, the optimal decision will be unknown, at least for some z. An
obvious upper bound is the conditional mean, but a tighter upper bound is
given by I the conditional distribution of the sign of returns.

2.4 Modelling Risk Neutral Forecasts

Having characterised risk neutral best predictors and their relation to the
conditional distribution of returns Fg|x, we now turn to the problem of mod-
elling them when Fgr|z is unknown, but an empirical distribution function
Fy consisting of draws {7y, wn}i\f:l from £ is observed. The objective is now
to define a ‘good’ prediction rule ¢ : RN x XN x X¥— R mapping the observed
sample and conditioning variable into a forecast 7, i.e. 7= q (Fn,x).

To proceed, some further structure is usually imposed on the form of
potential prediction rules. Here we will focus on the situation where a po-
tentially mis-specified parametric model G for Fy |z is postulated, taking the

12More generally, when A is equal to a constant a, Risk Neutral Best Predictors can be
found by determining the a’th quantile of the binary response Ir. Quantile regressions of
binary responses have been studied by Manski & Thompson (1989).
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form:
g= {GR| [.TJ,C} ,c€BC Rk}

It is ‘natural’ to use Fy to choose a parameter ¢y (and hence a model)
and assume that a RNBP with respect to Gg|[z,¢n] will be a good ap-
proximation to the RNBP with respect to Fr|x - particularly if parameter
uncertainty and the appropriate loss function are accounted for in estima-
tion of ¢ (see e.g. Zellner (1978)). In this case forecasts are given by decision
rules of the form ¢ : B x X — R with 7 = ¢ (¢y,x). Of course, there are
other ways of constructing prediction rules (see e.g. Geisser (1993)) but we
will restrict our attention to this type of rules in what follows.

In the rest of this section we will propose a novel way of obtaining ¢y and
discuss the reasons for which it may be preferable to standard estimators of
the pseudo-maximum likelihood, least squares and Bayesian variety.

2.4.1 Pseudo-optimal risk neutral forecasting models

If the model is mis-specified - as is likely to be the case in most applications
- we have no guarantee that standard estimators lead to good forecasting
rules (let alone best predictors) even asymptotically. In particular, standard
estimators generally converge to pseudo-true parameters (minimising the
Kullback-Leibler discrepancy from F') and it is not clear that the investor
will do well using a predictor based on a pseudo-true model. In particular,
there may be a model in G that leads to predictions of greater utility to the
investor.

Skouras (2000) examines this issue in the context of general expected
utility maximisation problems that nest the Risk Neutral Forecasting prob-
lem considered here. It is assumed that agents use Bayes’ rules with respect
to models (as we do here) and models are compared in terms of the payoffs
of the Bayes’ rules they generate. A pseudo-optimal model in G is defined as
the model in G that generates the largest (unconditional) expected utility
(evaluated with respect to F) for its users. In the context of the risk neutral
investment decision of interest, the pseudo-optimal risk neutral forecasting
model in G may be defined by a pseudo-optimal risk neutral forecasting pa-
rameter b such that:

b e argmin - / R-I[m(X,c)]dF, (2.13)
cc .
where F is the joint c.d.f. of (R, X) and
m(x,c) = / R-dGpg| [z, (]

is the conditional mean of the model with parameter c.
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Pseudo-optimal models are preferable to pseudo-true models for two rea-
sons. The first arises from the observation that pseudo-optimal models may
be as good as the true conditional distribution Fr|x for the purposes of a
particular decision-maker even when G is misspecified. In the context of the
risk neutral investment decision, this will be the case when G is misspecified
yet there is a b € B such that m (x,b) is a sign-preserving transform of the
conditional mean g (%). In order to characterise all fully optimal models,
we show that a necessary and sufficient condition for m (x,b) to be a RNBP
is that there is an optimal model in G and that b satisfies (2.13).

Proposition 2.4 Let m : X x B — R be the conditional mean of a model
GRg| [*, %] for Frlx such that m(x,b), b € B is a RNBP. Then Gg|[*,b]
is an optimal risk neutral forecasting model almost everywhere on X if and
only if Gr|[*,b] is pseudo-optimal (i.e. b satisfies (2.13)).

Proof. See Appendix. m

The second advantage of pseudo-optimal models is that even when it is
not the case that pseudo-optimal models are in fact optimal, Bayes’ rules
with respect to the pseudo-optimal model will be better in indefinite repeti-
tions of the utility maximisation problem than any other Bayes’ rules with
respect to models in G. This is because these Bayes rules optimise an un-
conditional version of the expected utility maximisation problem of interest.
Equivalently, while there may exist a better model with respect to which to
form Bayes’ rules for some x € X, it will nevertheless be optimal on average
(where each realisation of X is weighted by its density).

In our context, a risk neutral best predictor is the risk neutral investors’
Bayes’ rule with respect to the truth Fg|z. It solves an expression equivalent
to:

max E{W;-(1+a-Ri1)|z},zeX
a€[—s,l]

On the other hand, the risk neutral best predictor with respect to the
pseudo-optimal risk neutral forecasting model in G is a function m (x, b) such
that b solves:

max £{W; - [1+ (I + ) - I[m (X, )] = 5) - Bea]}
C

By contrast, Bayes’ rules with respect to pseudo-true models do not sat-
isfy any property that makes them suitable for use by an expected utility
maximiser and hence there is no ground on which to expect the standard
modelling approach to be ‘good’ for a risk neutral investor.'> We will there-
fore apply the Pseudo-optimal modelling approach of Skouras (2000). Tt is

13 Pseudo-true models often minimise the least-squares distance of a model from the con-
ditional mean. The properties of such approximations are often misundertood as discussed
by White (1980).
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worth noting that within this approach G need only specify models for the
conditional mean pg|x of R; if this is the case, G should be interpreted as a
semi-parametric model for Fg|z.

2.4.2 Estimating Risk Neutral Forecasting models

We now turn to the issue of estimating a pseudo-optimal risk neutral fore-
casting model. In Chapter 4 we propose general conditions under which
various estimators asymptotically converge to b given by (2.13). The most
general conditions are for the estimator by given by:

by € arg mig— / R-Im(X,c)]dFy, (2.14)
cc .

since it does not require correct specification of m (x, x) for the sign of the
conditional mean (Assumption 4.1). Assuming these conditions hold, use
of forecasts given by m(x,by) will be asymptotically pseudo-optimal. The
reason for this difference is the fact that by is a sample analogue of (2.13);
we will refer to the above estimator as the SAME estimator of a RNBP as
it is constructed from the Sample Analogue Moment Extremum condition
satisfied by the RNBP. In Chapter 4, we study the statistical and computa-
tional properties of this estimator. In this Chapter we consider its properties
as a way of estimating a risk neutral forecasting model.*

In order to compare estimated forecasting models in finite samples, we
will require that they perform well in terms of risk which is a measure of
their performance when they use a partuclar forecasting rule ¢ (¢y,z) and
estimator €y. For the risk neutral investor, the conditional risk with respect
to x when F' is the true distribution is given by:

R(E.ew) ] == [ B-Ilm(a,2v)| dFpeyla (2.15)

where Fp g, |z is the joint c.d.f. of R and ¢y conditional on z (derivable
from F', the joint c.d.f. of R and X). An unconditional measure of risk is
given by integrating over X in (2.15) to obtain:

RIUF.aw)] = - [ R Tim(X.60)] dFrxzy, (2.16)

While we know that the SAME estimator will asymptotically minimise
the unconditional measure of risk under general conditions on F, it is un-
reasonable to expect any estimator to minimise either measure of risk for
all possible F' in finite samples. Rather what we are after are estimators
the performance of which is fairly robust with respect to F' (Berger 1985).

14This estimator is an application of the idea of estimating a model using the relevant
loss function (Weiss 1996, Granger 1993, Manski 1991).
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Verification of such a property is a difficult task and there are few general
results, particularly when estimators are based on misspecified models.

In the following Section we conduct a simulation experiment of limited
but important scope. The goal is to compare the performance of the SAME
estimator and a standard maximum likelihood estimator in a circumstance
that would seem to favour the latter.

2.4.3 Simulated Risk of estimators for Risk Neutral Fore-
casting

Consider the following DGP:

Riy1 = bo+b1Re +Uq
U ~ N(0,0%) iid

bo 2 -1
~ N 1-0
RO (1 — bl , O ( 1) >
bg = 0.00015; b1 = 0.0330; o = 0.0108

The parameters of this DGP were determined using OLS to estimate an
AR(1) model on a series of returns drawn from the empirical distribution of
IBM daily closing prices!® from 1st January 1990 through to 6th November
1997 (2049 observations).

Suppose the parametric form of the DGP is known, but that the values
of the parameters are not. For reasons discussed in more detail in Chapter
4, our estimator can only provide a consistent estimate of the scale of the
parameters of a linear model. Hence, the model to be estimated takes the

form:16

m(X,c)=c+X
An estimate for Z—(l) is by satisfying:1”
by € arg min — / Riy1-Ic+ R dFn (2.17)
C

We took 7' = 10* draws from the c.d.f. Fy,, of by to obtain the simulated
distribution F3, and repeated for various sample sizes. In particular, we
set: N = {100 . 2l’1}l7:1. The size of T was chosen so that the standard

15Obtained from DATASTREAM on the last day in the dataset.

S¢trictly speaking, we should also estimate the model s (R,c) = ¢ — R unless we know
the sign of b1, but (for simplicity) we will assume here (and whenever we estimate linear
models) that this is indeed known. Often either theory or related empirical evidence
suggest this sign. Relaxing this assumption would involve significant computational effort
and is unlikely to be important for our conclusions.

1"To fix by at a particular point, we took (both here and later) the value closest to zero
satisfying (4.9).
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deviation @y, of ﬁbN did not change ‘much’ between % and 1" for any N.
The distribution ﬁbN was then used to study the risk associated with this
estimator.

In this setting, maximum likelihood suggests itself as a strong competitor
to the parametrisation obtained using the SAME estimator, since statistical
theory suggests it will have a number of desirable properties (asymptotic
normality, efficiency, quadratic convergence rates etc.). Maximum likelihood
estimates can be obtained as:

(bgﬁ”l, b’lnl> = arg min / (Riy1 — co — c1Ry)? dFy (2.18)

(co,c1) .,

so it is readily seen that they are also least squares estimates. We might
expect the attractive tractable properties of ML estimation as well as the
additional assumptions we conveniently impose to provide a ‘better’ fore-
casting model. However, the relevant comparison is in terms of the Risk
associated with using each estimator.

Conditional Risk comparison of estimators

The risk conditional on 7; for the forecasts based on estimates ¢y, ¢y is a
function of the form R [(bo, b1, 0, Co, ¢1) |1¢]. Given that (b, b1, o) are fixed in
this simulation, we may suppress them in our notation for the risk function
so that it takes the form:

R@oalr) = — / Rier - T[éo+ ) dFpy, comlre (2.19)

- /E (Repare) - T+ @ dFsy eyl (2.20)

We will make the assumption that for the estimators we consider ¢ = 22
and Ry are independent!® and furthermore that ¢ > 0, so that:

R (clry) = — (bo + biry) - (1 — Fe(—1y)) (2.21)

Let (b’(}”, b’lnl) and be parameter estimates obtained by maximum likeli-
hood. The associated forecasts are given by:

7= b+ by (2.22)

It may be worth noting that the maximum likelihood forecasts are also
optimal point Bayes forecasts for this decision problem when priors are dif-
fuse. Furthermore, it may be verified that taking parameter uncertainty into

18 This assumption is reasonable when the series does not exhibit dependence, or when
the sample used for estimation is sufficiently distant to ¢ with respect to the dependence
in the series.
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account will not affect the form of these forecasts, because risk neutrality
implies optimal estimates are a function only of E (R1|r;) with uncertainty
about this being irrelevant.

The risk conditional on r; for the maximum likelihood forecasts is:
R (bml\rt> = — (b~ byry) - (1 — Fyi (—1¢)) (2.23)

where Fjmi is the c.d.f. of b™ = Z—‘l).

Analogously, the SAME forecasts are given by:
N = by + 7. (2.24)
with risk:
R (bnlre) = — (bo + b1ry) - (1 — Fypy, (—74)) (2.25)

where Fj, is the c.d.f. of by.

We can get an idea of how these risk measures compare by using the
simulated distributions Fy and Fym obtained in our simulation to plot the
conditional risk functions of each forecasting model for each N (Figure 2.2).

0.8

0.4r

0.2

0 L L L I L L L L
-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025
)

Figure 2.1(a). This is a plot of (normalised) conditional risk for each sample size
N of the SAME estimator forecasts. As the sample size increases and estimates
become more accurate, risk decreases and the risk function becomes smoother.



50 CHAPTER 2. RISK NEUTRAL FORECASTING
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Figure 2.1(b). This is a plot of (normalised) risk for each sample size N of the
ML estimator forecasts.

It is clear from (2.21) that the performance of an estimator depends
on how closely the distributions Fy.: and Fy, are concentrated around the
ratio lb)—‘;. It turns out that the ML estimator provides very bad estimates for

this ratio in medium-sized samples because when b’lnl takes on small values,
. o . bt
the maximum likelihood estimate ol explodes'” and as a consequence, the

SAME forecasts are better for all r; in realistic sample sizes. This problem
is probably due to the fact that in financial series, bg and b1 are likely to be
small relative to o suggesting the sign of 2—2 will often be wrong. The close
connection between the maximum likelihood estimates and Bayes’ estimates
suggests that they are admissible, meaning that for some (bg, b1, 0) they will
not be dominated by the SAME estimator. However, this might be for an
irrelevant region in the parameter space.

For sufficiently large samples, the fact that the converges at a faster
rate than by (see Chapter 4) leads the ML forecasts to become better for
most ry (particularly those close to the mean of the marginal distribution
FRt of Rt)

bml

Unconditional Risk comparison of estimators
When neither estimator performs better for all r;, a ranking which is

not conditional on 7, can be provided by the measure in (2.16). For this
simulation, it may be expressed as:

R (bml) = - / (bo + b1 R) - (1 — Fyi (—R)) dFg (2.26)

19T his is related to problems addressed in the statistical literature on ‘inverse regression’
- see for example Kruthckoft (1967).
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and

R (by) = — / (bo +b1R) - (1 = Fyy (—R)) dFg (2.27)

Analytical expressions for these Risk functions conditional on particular
values of by or b™ can be evaluated using formulae provided in Appendix
B. Using the simulated distributions ﬁbmz and ﬁbN as estimates for Fymu
and Fy, in the expressions above, we obtain simulated estimates of the
unconditional Risk?” for each estimator and each N. These appear in Table
2.1 and Figure 2.2 below.

N 100 200 400 800 1600 3200 6400 oo
—10%-R (bml) 0.99471 1.1420 1.3233 1.5401 1.8026 2.0400 2.1994 2.3428
—10*-R(by) 17105 1.7328 1.8048 1.8772 1.9784 2.0592 2.1408 2.3428

Table 2.1 Each column corresponds to a sample size N for which we compute
the unconditional Risk of each estimator. The column corresponding to oo gives

the profits obtained when the true model is used.

‘—Q—Profits of proposed estimator —m—Profits of OLS-ML estimator

Mean pro fitabili
estimates *100
=)

Sample Size

Figure 2.2. Plot of estimators’ unconditional Risk as a function of sample size.

We conclude that the SAME estimator performs better up to very large
sample sizes according to this metric. This suggests that for series that are
believed to be sufficiently stable over time to make it reasonable to use large
samples in estimation, it may be a good idea to switch to the maximum
likelihood estimator in large samples. However, this is conditional on the
model being correctly specified, since otherwise we know that the SAME
estimator is likely to be do better in large samples because it converges to
the pseudo-optimal parameter.

*0In Chapter 3 we also report mean squared errors for the estimators in this simulation.
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More generally, caution is warranted in drawing generalisations from re-
sults obtained within this narrow environment. It is worth noting that the
performance of standard estimators in terms of unconditional risk can be
improved by using modifications that take into account parameter uncer-
tainty and the nature of the relevant risk function (see e.g. Zellner (1978)
for one approach to this problem) even though the same is not true for the
conditional problem.

2.5 Conclusion

We have characterised the forecasting problem of a risk neutral investor
and proposed an estimator for models of her optimal forecasts. Restricting
attention to this type of investor limits the scope of results obtained but
allows us to develop: (1) A convenient starting point for formulating a
decision theoretic foundation for financial forecasting (but see also Granger
& Pesaran (forthcoming) and Granger & Pesaran (2000)), (2) An attempt
to provide a rationalisation of ‘economic value’ as a performance metric and
estimation techniques that can be used to improve forecast performance
according to this metric, (3) A set of results that may be used for a formal
treatment of ‘investment rule’ estimation, applicable for example to the
estimation of technical trading rules and market timing rules.

The ‘risk neutral best predictor’ is a formalisation of the notion of an
‘optimal point forecast for a risk neutral investor’. Since any function which
has the same sign as the conditional mean is a risk neutral best predictor,
it follows that Risk Neutral Forecasting is ‘easier’ than conditional mean
forecasting in the sense that less stringent assumptions on model specifica-
tion accuracy are required for optimal predictors to be tenable. This occurs
because the conditional mean is only one of an infinity of risk neutral best
predictors any of which solves the forecasting problem of the risk neutral
investor. Thus the estimator proposed for learning risk neutral best pre-
dictors will lead to models that are optimal for this investor under weak
assumptions on model specification.

More generally, the estimation method proposed will lead to a pseudo
optimal model. That is, it will lead to the model in the chosen class that
maximises the unconditional expected utility of a risk neutral investor when
used as the basis on which beliefs and forecasts are formed. Furthermore, our
simulation has shown that even in conditions that seemingly favour standard
estimators this estimator may be better for the risk neutral investor. It is
not entirely clear what drives this interesting result.

A number of trivial but interesting extensions have been discussed such
as including transaction costs in the decision problem of the risk neutral
agent; others are feasible no doubt. The exploration of complementaries
with other lines of research in financial forecasting may also be an avenue
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for fruitful work. For example, it would be interesting to use our results
to modify Lo & MacKinlay’s (1997) methods for constructing maximally
predictable portfolios to obtain portfolios the predictability of which would
be of mazimal economic significance.

It would be useful to consider how other stages of the modelling process
(in addition to estimation) should be modified to accommodate the specific
problem of Risk Neutral Forecasting. For example, deriving the distribution
of out of sample performance of estimated Risk Neutral Forecasting models
could be used for model selection and evaluation (see West (1994)). Hope-
fully our characterisation of optimal forecasts in this context will be useful
in doing so. The need for such results is accentuated by the fact that the
properties of the proposed estimator are understood only imperfectly (see
Chapter 4).

All these directions are important but the main priority for future re-
search is empirical. The results developed permit estimation of a Risk Neu-
tral Forecasting model that can combine the structure of econometric models
for returns with the profitability of the most successful investment rules. A
hybrid model of this form should provide new insights into the structure
of financial series in general and may be particularly useful in detecting
regularities which exert a strong influence on investment behaviour.
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2.6 Appendixes

Appendix A: Proofs of lengthy propositions

Proof of Proposition 2. Since for x € X:

pig (v) = Pr(Ip = 0|2) E (R|Ig = 0,2) + Pr(Ig = 1|z)E (R|Ip = 1, 2)

It follows that for x € X:

pr () = —=Pr(Ig =0lx)E (|R||Ir = 0,2)+Pr(Ig = 1|x)E (|R||Ir = 1, x)
= BRI 11 = 1.0) Pl = 0} (£ = 0. + £ (R = 1.0
2.28

Define h : X — R such that:

B 1
") = R Tr=0,2) + (R In = La) (2.29)

If p(x) is a risk neutral best predictor, by Proposition (1a) it satisfies:

p(x) €argmin —I 7] - pp(z), v € X
FER?

Since for all € X', h(z) > 0 this is equivalent to:
p(w) € argmin —I[] - i () - h(w), x € X
re
By substituting (2.28) and (2.29) into this expression, we obtain (2.10). m

Proof of Proposition 4.
Suppose m (,b) is a RNBP almost everywhere on X. By definition:

m(z,b) € arg?r%iRr}—./‘R-I[ﬂ dF |z, ae. X
so it must be that for all c€ B :
_ /'R.I[m(x,b)} dF|z < — /R-I[m(X,c)]dF]x, ae. X
Integrating over all inequalities in X’ with the probability measure of x :
- /R-I[m(X,b)}ng - /'R-z[m(x,c)}dF, Ve e B,

So (2.13) is indeed a necessary condition.
“~=



2.6. APPENDIXES 95

Notice that:
—‘/R-I[m(X,c)}dF _ —./‘MR(X)-I(X,C))dF
>~ [ (X) - T(X,0) Ty (X)dF
>~ [ () Ly (X)aF.

for all ¢ € B.
Since the model is correctly specified, there exists a o/ that satisfies
m (X, 1) = il X) 50

—/R-I[m (X,c)]dF > —./',JR (X) - I(m (X,V'))dF

If b minimises (2.13) then it must be that I [m (X,b)] = I(m (X,V')) almost
surely. Then by Proposition 1 m (X,b) is a RNBP almost surely. ®

Appendix B: The distribution of profits when forecasts and returns
have a joint normal distribution

Here we derive general expressions for the distribution of a risk neutral
investor’s profits (defined as —1 times the loss function in (2.6)) under the
condition that predictions and returns are jointly normal.?! These results
are used in Section 4.3 to derive losses of SAME and ML estimators.

Let:
FIRFR )
Yy I 012 03
Suppose Y] is a forecast for Y{ and let X be the profits obtained by a
risk neutral investor from the use of this forecast. Then,

X=Y{-1(vy>0)
Let

Y/ — Y, — 019
Y, = 10 Ml,Ygz 2 M27p:

1 02 (()‘1()'2)

IR )

I Acar (1998) has derived the expression for the mean of a closely related distribution.

No|=

Then
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So

Y if Yo > —&2
Xy, =4 MTan i L
’ 0 otherwise

which implies:

E(X) = ,ulPr<Yg>—%> +01E<Y1-1<Y2>—&>>

2 02

o _ M2 DA e
= mll-@(-=2))+0 Y1 vy vadyady

g2 J—oo J—E2

2

where ® is the c.df. of the standard normal and fy, y, is the p.d.f. of
Johnson & Kotz (1972, p. 113) report results which imply:

00 00 2
p u
[y = o ()
o2

Hence:

E(X) = (1 ~ (—ﬁ—i)) + 01\/’;_# exp (— (5—2)2> (2.30)

The Variance of this strategy can also be calculated, by using the fact
that Var (X) = E (X?) — E(X)?, (2.30) and an expression for F (X?)
provided by Johnson & Kotz (1972, p. 113).

Example: Use of an AR(1) model to forecast an AR(1) normal
process.

Suppose that:

Y] = Ris1=0by+b1R+Ut1; U1 ~ N(0,00)
YQI = ¢+l

Then it follows that:

b UIQJ b UIQJ
j/‘/
1 ~ \/ l_obl l_b% “ ll_b%
Y] co+ 2o |7 of 204
2 0 1 l—bl Clbl 171721 Cl 171)21

Substituting this back into (2.30), we can obtain exact values for the mean
profits obtained from using an AR(1) forecast for an AR(1) series:

s = o o (- (2 12) F)

]_—bl |C1| ]-_bl oy

249
4 O'Ub1 exp | — <C_0 4 bo ) bl _ 1
27 (1— b2) el - L=b) g
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For the parameters in Simulation 4.1, (bp = 0.0015; by = 0.0330; oy =
0.0108) the profits from an optimal forecasting model (by = ¢1,bp = ¢1) are:

E(X)=23428-107*
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Chapter 3

Learning to profit with
discrete investment rules

SUMMARY

In this chapter we attempt to explain the widespread use of discrete in-
vestment rules such as technical trading and market timing rules based on
the fact that good rules of this form are relatively easier to learn. We show
that a simple behavioural learning model (based on an estimator discussed
in detail in Chapter 4) provides a good algorithm (from both a normative
and positive perspective) with which investors’ might learn good investment
decision rules. In the context of this model and in a mean-variance optimi-
sation framework we show formally that investment rule discretisation both
simplifies and robustifies learning. Results are somewhat specific to the par-
ticulars of the proposed model, but are intended primarily to organise ideas
for further development in future research.

3.1 Introduction

It is a fact that many popular investment decision rules are discrete in
nature. As discussed in Chapter 1, many technical trading rules are binary
as are various market timing rules. This is puzzling since it is hard to believe
that such rules are indeed optimal for a broad range of investors and it is
not obvious why deviations from optimality in this direction might arise.
In this Chapter we argue that these deviations are quite natural because
they substantially facilitate a particular mode of learning at little cost to
the investor. Furthermore, we argue that this mode of learning is a good
description of how investors actually learn, not only because it is evolution-
ary (and hence closer to the way humans actually learn than learning ‘like

OAn early version of this paper appears in the Proceedings of the Sixth International
Conference on Forecasting Financial Markets. The current version is still preliminary.

59
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an econometrician’) but also because it is potentially better than standard
econometric learning methods in investment contexts.

Put more abstractly, our goal is to use a learning model to explain a
puzzling empirical fact pertaining to individuals’ observed behaviour. This is
in contrast to the standard use of learning models which is to provide better
explanations of various aggregate economic phenomena (Sargent 1993) such
as the behaviour of financial time-series. To the best of our knowledge,
this is the first attempt to use learning models for this purpose and this
methodological contribution provides further motivation for this Chapter.
As a side-product, we also deliver normative results in the form of an effective
learning model for discrete decision rules that may be of use to investors
(such as technical analysts) who are committed to the use of such rules.

In order to obtain our results, we restrict our attention to a specific
decision environment. We consider agents using binary decision rules to
optimise mean-variance objective functions. We propose that agents learn
to choose their rule without explicit beliefs about the environment in which
they operate. Instead, agents learn by using the rule that would have led
them to maximise their utility had they used it in the past. This is con-
sistent with an estimation method analysed in Chapter 4 and used by the
Artificial Technical Analyst in Chapter 1. It is closely related to the be-
havioural learning models analysed by (Easley & Rustichini 1999) which
are important because they come close to being consistent with features of
observed learning behaviour.

In the context of a mean-variance utility maximiser constrained to use
binary decision rules! learned using our behavioural /evolutionary method,
we show that: (a) This learning method is good (generally better) relative
to the standard benchmark of least-squares learning; and (b) The binary
decision rules economise in ‘rationality resources’ relative to the use of con-
tinuous decision rules.

The next section introduces our simple model for investment decisions.
In Section 3 we report results of simulations with which the profitability of
alternative learning methods are compared and in Section 4 we discuss the
merits of the learning method we propose. The paper is concluded with a
summary of our main results and some conjectures they suggest.

'The study of binary (long-short) decision rules is common; for example, they arise
in studies of technical trading (Sullivan, Timmermann & White 1998) and market timing
rules (Henriksson & Merton 1981) and are constructed from forecasts based on a variety
of econometric models (see for example Breen et al. (1989) and Pesaran & Timmermann
(1995)).
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3.2 Mean-variance investments with binary para-
metric decision rules

Consider an agent solving the following single-period cash-asset allocation
problem at time ¢:

max I Wi |z] — oV Wi |2] (3.1)
VVt—i—l = Wt'a‘ (1+Rt+1)+Wt'(1—a)

where E [«|z] and V [*|x] denote mathematical expectation and variance of
a random variable conditional on realisations € X of the ‘information’
random variable X;, W, is wealth in period {, Ry are returns to the risky
asset (or portfolio of assets) and a > 0 is a parameter determining the degree
to which this agent is averse to risk (variance). The action a is restricted by
the agents’ budget constraint to lie in a subset A of R.

In what follows, we make the following assumptions:

Assumption 3.1 The agent knows of a parametric ‘action rule’ model a :
X x B — A such that for some b € B, a (x,b) is the solution to (3.1) almost
everywhere on X .

Assumption 3.2 The agent discretises his choice set by restricting A to a
binary set of symmetric positions, A = {—k, k}.2

As we have noted, many agents actually do discretise their choice sets
and we will provide an explanation for this in Section 4. For now note that
assuming a binary choice set is particularly convenient since it allows us to
obtain an utility-based performance measure for action rules that does not
depend on « - and hence is common to all mean-variance agents, regardless
of their degree of risk aversion.

3.2.1 Interpretation of decision rules
On the basis of Assumptions 1 and 2, we may write a as a function:
a(x,c) =sign(m(z,c)) =2 -Im(z,c)]—1) - k,zeX (3.2)

where I [%] is a sign indicator function taking the value one if the value in
the brackets is positive and zero otherwise.
Two important interpretations we may give to m (x,*) are:

e A parametric forecasting model for returns.

e A technical trading rule or market timing rule.

?Note that if the agent is risk neutral (o = 0 in (3.1)) we can weaken this assumption
to one of symmetry of A around zero without affecting the solutions of (3.1).
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3.2.2 A common utility-based performance measure for de-
cision rules

Tt is straightforward to show that the law of iterated expectations and As-
sumption 1 imply that a necessary and sufficient condition for a (x,b) to be
a solution to (3.1) is that :

b € argrrgagE[V[/}H} — oV [Wig] (3.3)
Wisi = Wi-a(X,¢)- (1+Rit1)+We- (1 —a(X,¢)

where E [*] and V [] respectively denote the unconditional expectation and
variance of a random variable.

Proposition 3 of Chapter 1 shows that when E (R;1) > 0, Assumption
2 implies:

argmax 5 [Wei1] — oV [Wiy1] = argmax £ [Wey] (3.4)
Wir =Wi-a(X,¢) - (1+ Re1) + Wi - (1 —a (X, )

Hence, using also the linearity of the expectations operator, it follows
that a (*,b) is a solution to (3.1) if and only if:

bEargrgleaé(E{R-I[m(X,c)}}. (3.5)

So under our assumptions, the performance of a parametric decision rule
for any mean-variance agent can be expressed as a function of a common
profitability measure 11 for each parameter ¢ such that:

T(c)=E{R-I[m(X,c)]}. (3.6)

3.3 Learning to parametrise discrete decision rules

Let us now assume that agents must make decisions on the basis of a finite
history of observations of the state variables.

Assumption 3.3 A sequence of draws {T‘n7=’17n}7]:[:1 from the distribution of
(R, X) are available to an agent who wishes to solve (3.1) but has no prior
beliefs regarding this distribution.

This section discusses competing methods for formulating decision rules
d: XX (]RXXN) — A interpreted as methods for learning the optimal action
rule a (*,b). Such methods can be viewed as statistical decision functions as
defined by Wald (1971) and their use can be associated with what Neyman
(1938) referred to as inductive behaviour.
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3.3.1 Performance of ‘econometric’, least squares learning.

It is possible to estimate m (x,c) as a forecasting model for E (R|*) and
use the forecasts thus derived in the decision rule d. For example, the
popular ‘least squares learning” model used for example by Bray & Savin
(1986), Fourgeaud, Gourieroux & Pradel (1986) and Marcet & Sargent
(1989) is precisely in this spirit. If the model is correctly specified®, i.e.
m (x,b) = pg () for some b € B and for all # € A, then standard regularity
conditions ensure that the OLS estimator b'* will converge to b as N tends
to infinity. The following is a simple simulation designed to measure the
profitability of this learning method in finite samples.

Simulation 3.1
Consider the following DGP used also in Simulation 5.1 of Chapter 2:4

Riy1 = 0.00015 + 0.0330 - Ry + U1 (3.7)

Upe1 % N(0,0.0108).

The parametric model to be learned by OLS is
m(Ry,¢) = co + c1Ry.

We will denote the OLS estimated parameters <b€)5, bl15> . The model used
in the discrete decision rule of an agent operating by least squares learning
is:

d (Rt, b‘8> —1 [bff bl Rt} (3.8)

Assuming blls > 0 and that b = ZL: is independent of R, the expected
1
profits II of this rule are given by (see (3.6) and (3.7)):

m (bZS) = / (0.00015 + 0.0330 - Ry) - dFg, (3.9)
J—bls
where Fg, is the marginal c.d.f. of R;. An exact analytical expression
for (3.9) in terms of the underlying parameters is given in Appendix B of
Chapter 2.
Evidently, the profitability of an estimate (bff’, b”f) depends only on b,

The closeness of b to b = 2—(1) (the true parameter) therefore serves as a good

3Note this is much stronger than Assumption 1.

*The parameters of this DGP were fixed using OLS to estimate an AR(1) model on
a series drawn from the empirical distribution of 2049 observations on IBM daily closing
prices from 1st January 1990 through to 6th November 1997. (Source: DATASTREAM).
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indicator of the profitability of this estimation technique. Unfortunately, b
does not inherit the neat convergence properties of (bls, blls) because it is a
ratio of normally distributed random variables which will therefore have an
infinite variance.” The expected profitability from using the least squares

estimator is given by
s — / (") dFy.

where Fjs is the c.d.f. of the least squares estimator.

We took 10000 draws from the distribution of Fys for various sample sizes
N and computed estimates for the mean and standard deviation of Fys as
well as the associated profits II'* from using the least squares estimator.
These are given in Table 3.1.

N 100 200 400 800 1600 3200 6400

oo

103'///\lxbls -14.338  -4.1141 -10.918 1.4320 6.9320 8.3079 6.2292 4.5455

102-?7sz 79.465  47.077 61.121  38.030 33.415 30.628 5.8787
1011 0.99471 1.1420 1.3233  1.5401 1.8026 2.0400 2.1994

2.3428

Table 3.1 Each column corresponds to a sample size N for which we compute

the mean fiy. and standard deviation Gy of the simulated distribution of b*.

The column corresponding to oo gives the true value b and the profits obtained

if this value is used.

3.3.2 Performance of a ‘behavioural’ learning method.

Suppose the agent uses the rule that has performed best in terms of in
sample profitability II(¢). By (3.6), the decision rule thus obtained will be
parametrised by by solving:

max Ex {R-T[m(X,c)]} (3.10)
ceEB
where Iy is the empirical mean given a sample of size N.

The properties of this estimator are analysed in Chapter 2 where we show
that under certain regularity conditions (satisfied by the DGP considered in
our simulations) the estimator is asymptotically consistent. Furthermore,
simulations here suggested that by converges at cube-root rate to a non-
normal distribution.’

®This problem is exacerbated by the fact that by and by are small relative to the variance
of U and therefore their own variance. Hence the ratio —“ is particularly ill-behaved since
with large probability both by and b; will be close to zero. Such parametrisations are
natural in financial series because they have a very low signal-to-noise ratio. It may be
that in other environments, least squares learning performs somewhat better.

®This is perhaps due to its structural similarity to the maximum score estimator of
(Manski 1975).
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While the convergence rate of by to B is slower than the rate of con-
vergence of <b15, b118> to (bo,b1), this does not mean that b* converges faster
than by to B. It may therefore be the case that use of the estimator by is
more profitable in finite samples. We confirm this is the case in reasonably
sized samples with the following simulation.

Simulation 3.2

Using the same draws as in Simulation 3.1, we examine the distribution
of by and its profitability - which is given by an expression analogous to
(3.9). Results are reported in Table 3.2 which consolidates Table 3.1 of this
Chapter and Table 2.1 of Chapter 2.

N 100 200 400 800 1600 3200 6400

103 - Lpis  -14.338  -4.1141 -10.918 1.4320 6.9320 8.3079  6.2292
103 - ﬁbN 1.2797  1.3502 24048 2.9877 3.9049 4.099 4.4858
102 cOps 79465 47.077  61.121  38.030 33.415 30.628  5.8787

102-31,1\, 1.3603  1.3378 1.2694 1.1699 1.0162 0.86258 0.69860

10 -1 0.99471 1.1420 1.3233  1.5401 1.8026 2.0400  2.1994
104-HbN 1.7105 1.7328 1.8048 1.8772 19784 2.0592  2.1408

00
4.5455
4.5455

2.3428
2.3428

Table 3.2 Each column corresponds to a sample size N for which we compute

the mean and standard deviation of the simulated distribution of by and bl

The column corresponding to oo gives the true value b.

3.3.3 The normative advantages of ‘behavioural’ learning

Our analysis and simulations suggest that, for the restricted decision prob-
lem we have considered:

e The estimator based on parametrising decision rules is more profitable
in reasonably sized samples. A heuristic account of why this occurs
is that, while it may be less efficient at exploiting the information in

a sample {r,,, mn}gzl, it complements the information it does extract

with information about the form of the decision rule d (%, ¢) in a way

that makes it effective at determining the optimal decision rule d (x, b).

By contrast, ‘statistical’ forecasting methods can only exploit informa-

tion in {ry,, 5Un}2[:1 and therefore may be at a disadvantage even when

they perform this task ‘well’.

e Learning methods based on estimators of parametric models of the
underlying environment are generally consistent when these models
are correctly specified. Correct specification of a parametric decision
rule for an optimal decision rule is a weaker condition as discussed also
in Chapter 2 and this means that convergence to the optimal rule may
occur more generally with behavioural-type learning algorithms.
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e When the assumption of correct specification is not satisfied, the rule
learned is nevertheless the ‘best’ permitted by the model class, i.e. it
minimises unconditional Risk (see Section 4.3 of Chapter 2). By con-
trast, the rule obtained by least squares has no natural interpretation.

e The estimator can serve to parametrise decision rules based on tech-
nical trading rules and market timing rules which do not have inter-
pretations as forecasts for returns and for which methods such as least
squares learning are inapplicable.

Further study of these issues is of course warranted, particularly to com-
pare the performance of these methods on real data.

3.4 An explanation of the prevalence of discrete
decision rules

It is easy to see how agents may come to use parametrised decision rules:
it is sufficient that through experience they obtain enough knowledge to
reduce uncertainty about their optimal decision rule to uncertainty about
the value of a finite dimensional parameter. 1t is much harder to explain
why the decision rules they use are discrete, even though this often turns
out to be the case in reality.

Here we provide an explanation in terms of ‘bounded rationality’ by ar-
guing that the ‘rationality resources’ conserved using the discretisation may
be larger than the utility losses incurred because of its use. While the ex-
planation necessarily remains informal because of the lack of an applicable
formal theory of ‘rationality resources’, we can make a qualitative compar-
ison of the effects of the discretisation in the context of the decision model
introduced in Section 2.

At first sight, one may observe that the utility loss due to discretisations
may be ‘small’ but, on the other hand, it is unlikely that use of continuous
decision rules is substantially more costly than the use of discrete decision
rules. However, when decision rules need to be learned we show that the
advantages to using a discrete set of actions may be substantial. This is
shown in the context of the behavioural model for learning introduced in
Section 3. We have already discussed some of the advantages of this type of
model; the fact that it helps us explain the observation of discrete decision
rules is an important additional advantage.

In the context of our model, discretisation facilitates learning because it:

1. Reduces the dimensionality of information required for opti-
mal action. Information about the state variable’s distribution nec-
essary for the agent to act optimally may be drastically reduced and
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this may greatly simplify the aspects of the environment that need to
be learned. This is illustrated in our model in which we show that
discretisation makes the solution to (3.1) independent of v and hence
makes learning about second moments unnecessary.

2. Robustifies the optimal rule with respect to the objective
function. Optimal discrete rules may be invariant within some large
class of objective functions. This is also illustrated in our model
because the same rule is optimal for agents with different variance-
aversion . This facilitates learning because:

a acilitates ‘learning from others’. In particular, it makes i

It litates ‘1 ing thers’. 1 ticular, it makes it
possible for an agent to act optimally by copying what more ex-
perienced agents with unknown preferences are doing or have
done.

(b) It means that the same rules remain optimal even if the agent’s
objective function changes so that the agent does not need to
learn from scratch. This may occur either because of changes in
the agent’s preferences or because of changes a principal makes
to his incentives.

3. Robustifies performance with respect to the DGP. The robust-
ness of a rule in relation to, possibly non stationary, unknown or even
unknowable aspects of the DGP (e.g. its tails) interact with decisions
may be altered so that smaller utility losses are incurred by the agent.
For example, in our model it is only knowledge of the ratio Z—‘i which
is necessary to derive an optimal decision rule. As long as this can
be determined, the precise values of (by,b1) are unnecessary; meth-
ods which attempt to determine (bg, b1) such as OLS can lead to poor

estimates for 2411 - which is what matters.

It should be noted that these advantages were particularly important in
the pre-computer era when learning was particularly costly and the prop-
erties of financial series were hardly understood. Once the use of discrete
decision rules had been established, there was likely to be lock-in to their use.
The reason for this is that accumulated knowledge which is useful within
the discretised decision framework (as determined by restriction of choice to
a ‘narrow’ parametric class of decision rules) may be difficult to translate
into valuable information for decision making in other settings. For exam-
ple, knowledge that a technical trading rule is profitable may not be easy
to translate into knowledge about the distribution of returns which would
be useful for a Bayesian agent using continuous decision rules. Hence we
should not necessarily expect improved knowledge about properties of de-
cision rules to necessarily weaken the incentives for using the discretisation
and we do not expect discretisation to be a temporary phenomenon.
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3.4.1 On further positive applications of behavioural learn-
ing models

As we have previously mentioned, behavioural learning methods such as the
one proposed in Section 2 is consistent with what are believed to be some
of the ‘stylised facts’ of how people actually learn. By serving as a model
of how agents do learn, rather than as an as 4f model for agent behaviour,
it can provide sharper characterisations of both mico and macroeconomic
aspects of the markets in which they operate. At the macro level, for exam-
ple, it can help us understand how information is incorporated into prices
and quantify the degree of a market’s efficiency (Section 5, Chapter 1). At
the micro level, we have argued that it can help answer a variety of ‘puz-
zles’ concerning the behaviour of investors such as why they use discrete
rules, such as technical trading and market timing rules. We look further
applications in this direction.

3.5 Conclusion

Our goal has been to explain the widespread use of discrete decision rules
by showing that it facilitates learning. To do this, we have had to utilise an
appropriate model of learning in a particular decision setting. Our learning
algorithm is based on the Risk Neutral Forecasting estimator of Chapter 2
which we emphasise is an appropriate way of learning the parameter of a
discrete decision rule. Using simple simulations, we show that our estimator
performs well as a normative model for learning. We also discuss why it is
useful in positive modelling of certain aspects of investment behaviour.

While our results are provided within the context of a fairly narrow
decision model, we conjecture that some of them generalise broadly. In
particular, suppose a learning problem can be reduced to a ‘parametric
learning’ problem, i.e. a problem of learning a parameter b of the state
variables” DGP. Then instead of constructing a model for the DGP, it may
be preferable to use the fact that the parameter b solves the agent’s decision
problem:

max E [U (X, d (X, ¢)) | Xy . (3.11)

ceB

to develop a natural learning method for b in the form of an estimator:
by € argmeaé(EN U (X,d(X,c)) (3.12)

Correspondingly, a natural decision rule for this agent is d (x, by ).
The reason this is a ‘good’ learning method is because:

1. It leads to decisions which have a behavioural foundation, i.e. learn-
ing is ‘realistic’, and hence are useful as positive models of investors’
learning.
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by is an asymptotically consistent estimate for & under general condi-
tions.

We conjecture that for small enough sample sizes (or when there is
appropriate non-stationarity in the DGP):

E (U (X,d(X,bn))) >E(U (X»d(X@))

where b is a classical estimate for b obtained with a learning method
lacking a ‘behavioural foundation’ such as OLS. This is because while
other estimators may be more efficient at exploiting a sample’s infor-
mation about the distribution of state variables, they do not exploit
information about how the estimated parameter will be used, which is
most relevant.

If (unlike in this paper) d (*,b) is a continuous function of b for all
x, this learning method reduces to the application of the method of
moments to the first order conditions of (3.12). The well-understood
regular properties of this estimator will therefore also apply to the
learning method and its analysis will be greatly simplified. Efficiency
gains might be obtained by using the Generalised method of moments.

These conjectures will be studied in future work. Furthermore, a model

of a financial market in which agents learn using a method of this form will
be developed in an attempt to replicate some of the outstanding features of
financial series.
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Chapter 4

Estimators for the sign of a
regression mapping

SUMMARY

In this Chapter we show that there exist a number of important appli-
cations in which the interest of a statistician or an economic agent focuses
on the sign of a (mean) regression mapping rather than the mapping per se.
We propose three related estimators that are robust with respect to model
mis-specification in that only a weak specification condition is required for
consistency in the relevant regression attribute. Furthermore, they are also
more parsimonious than standard estimators which may be poor estimators
of a regression’s sign. The relative merits of each estimator is discussed
and simulations are used to study some intractable properties of one of the
estimators.

4.1 Introduction

Consider the random variables Y and X € X related by:

Y = iy (X)+7, (4.1)
E{Ulz) = 0,

where iy : X — R is an unknown and for now unrestricted mean regression
mapping, U is an unobserved scalar disturbance term and E (U|X) is the
expectation function of U conditional on realisations x of X. It will be un-
necessary to make any further assumptions about the behaviour of Fy |z, the
conditional distribution of Y given x. The ‘sign of the regression mapping

71
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py ()’ is an indicator function I, (x) = I (uy (x)) where:!

I(z)z{ 1if2>0 }

0 otherwise

In this paper we deal with the problem of estimating I, using N draws

{yn,xn}gzl from the unconditional distribution F' of the vector random
variable (Y, X). The estimators we will propose are best characterised as
semiparametric since they require restriction of uncertainty about I, to a
finite parameter ¢, yet do not require parametric restrictions on U. FEvi-
dently, they will be applicable quite broadly.

To the best of our knowledge, we are the first to focus on this problem,
so we devote some effort to discussing its importance. We show that there
are a number of applications in which the sign of a regression mapping is the
object of interest. In particular, many decision problems with discrete choice
sets or discrete solutions can be solved if the sign of a regression mapping is
known. We provide a simple example of a job search decision (an optimal
stopping problem) in which the choice set is discrete (accept or reject a job
at a given wage) and the optimal decision is a function of the sign of a
regression mapping. We also discuss an important generalisation of the risk
neutral investor decision problem of Chapter 2 to the case where there is an
interest bearing riskless asset and transaction costs. The solutions of this
problem are functions of the sign of certain regression mappings. Finally, we
show that calibration (Eisenhart 1939) and econometric equation inversion
(Hendry & Ericsson 1991) can be seen as problems requiring the estimation
of a regression mapping’s zeros and discuss the advantages of doing this
using the methods introduced in this paper.

Estimation of the sign of a regression mapping may also be useful to an
econometrician when the regression mapping i, is of interest but models
based on different assumptions lead to different estimates for py-. In this
case, it can serve as an informal specification check or model selection cri-
terion since it can be used to check which estimates for iy best agree with
an estimated model for its sign.?

The standard approach to estimating the sign of a mean regression map-
ping would be to view this as a particular function of the regression model pa-
rameters. Estimation of the sign can thus be transformed to the problem of
estimating a function of model parameters rather than the parameters them-
selves and a number of (primarily Bayesian) techniques for achieving this
general objective have been developed (Zellner 1978, Park & Zellner 1979).
The contribution of this Chapter is the introduction of novel estimators

!This definition of the sign of g distinguishes only between positive and non-positive
values of g. In Section 4 we will also consider situations where the further distinction
between negative and zero values of g must be made.

% Analogously, Stoker (1986) proposes to use estimates for the scale of parameters as a
specification check for models used to estimate the values of the parameters.
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with desirable properties obtained by exploiting special properties of the
particular (sign) function of the parameters in which we are interested.

Estimation of the sign is closely related to estimation of the zeros of
a regression function which is a problem that has attracted some interest.
In particular, Haerdle & Nixdorf (1987) and Tsybakov (1988) have derived
computationally convenient recursive nonparametric estimators for the ze-
ros of a regression function. They note that nonparametric estimation of a
regression function requires a great deal of learning which is redundant when
only its zeros are of interest. Exploiting this fact, they provide estimators
which learn only about the regression functions’ zeros and are therefore
computationally cheaper. Similarly, we exploit the fact that our interest
is concentrated on the sign of a regression mapping to develop paramet-
ric estimators that require little prior information on model specification,
are relatively parsimonious and deliver accurate estimates of the desired
attribute (the sign).

This chapter is organised as follows. In Section 2, we discuss reasons
for which less prior information (in a sense to be formalised) is required to
correctly specify a model for [, . than for yy and propose three consistent
estimators for I, . In Section 3, we discuss further properties of our esti-
mators and reasons for which they may be better than estimators derived
from a model for py- even when it is correctly specified. In Section 4 we
motivate our focus on the sign of regression mappings by discussing a num-
ber of significant applications in which knowledge of a regression mapping’s
sign is the object of interest. We conclude with a survey of our results and
a discussion of plans for future research. An Appendix follows containing
all lemmata used in the proofs of our results.

4.2 Estimators for the sign of regression mappings

4.2.1 Model specification assumptions

Our analysis will be restricted to the situation where a potentially mis-
specified parametric model G for Fy |z is postulated, taking the form:

g = {Gy] x,c],ce BC Rk}
The conditional mean of the model with parameter c is:
m(x,c) = /Y - dGR| [z, ]

Our analysis will be restricted to pairs (G, Fy|z) such that m : X x B — R!
is correctly specified for the sign of the conditional mean on B - that is,
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for some b € B, I (m(z,b)) = I, () for almost all .> We formalise our
specification requirement in the following assumption.

Assumption 4.1 Letm : X x B — R! be a model such that for some b € B,
m (xz,b) has the same sign as py (x) almost everywhere, i.e.:

m(z,b)w (z) = py () a.e., (4.2)
for some strictly positive mapping w: X — R}Hr.

An example illustrating the weak restriction this imposes on the relation
of m and gy is given in Figure 4.1 below.

s(x.b)=x+b_

g(x)

Figure 4.1. Two functions m (,b) and py (%) satisfying Assumption 4.1.

Correct specification of m (%) as a model for py- is much stronger than
Assumption 4.1 in that it requires (4.2) to hold for w (x) = 1 rather than for
some w : X — ]R}r +. It is easy to imagine a situation where we cannot be
confident that a parsimonious model is correctly specified for the conditional
mean yet we can postulate such a model for the sign of the conditional mean.
For example, if « is a scalar and - is believed to be a highly nonlinear and
discontinuous function satisfying a single-crossing condition at zero (e.g.
Manski & Thompson 1989) with lim, . 3 () < 0, then Assumption 4.1
is satisfied for m (x,¢) = ¢ + x. If the sign of the regression mapping is of
interest, direct estimation of the model I (x + ¢) would be preferable to an
estimate for I, derived from a model for py that would be mis-specified
and might therefore lead to inconsistent estimates.

It should be noted that given our weak specification requirement, models
in G need not be specified beyond models for m (x,%). We may therefore
take a semi-parametric perspective and think of our analysis as being the
modelling of conditional means (in which case we would think in terms of

3This is a requirement of correct specification for a very particular conditional attribute
of a model. See White (1994) for definitions of correct specification in other more standard
conditional attributes, such as the mean or median.
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the pair (m (x,%), iy (*))) or even the modelling of the signs of conditional
means (in which case we would think in terms of the pair (I (m (x, %)) , I,)).
For notational simplicity, we will denote I (m (x,c)) as I (x,c);

4.2.2 Sufficient conditions for estimator consistency

We now introduce some further assumptions to be used in proving the
asymptotic consistency of our estimators. The estimators we propose are
all moment extremum estimators, based on conditions known to be satis-
fied by I,,,,. Having introduced the estimators and having shown they are
consistent, we will discuss their relationships in the next Section.

Assumption 4.2 (Compactness) The parameter space B C R¥ is com-
pact (or discrete, in which case only the next assumption is necessary).

Assumption 4.3 (SLLN) The draws {yn,wn} _1 from F satisfy a strong
law of large numbers (a variety of which can be found in White (1984)).

Assumption 4.4 (Identiﬁability) There exists a unique b € B s.t.:

Y I(X,b)dF = mlg—/Y-I(X,c)dF
ce .

Whether this zdentzﬁabzlzty assumption holds will depend on the interaction
of {m,F,B} and must be ensured on a case-by-case basis by appropriate
specification of m (%) and B given our priors regarding the behaviour of F.
We derive some sufficient conditions for this in Appendiz B.

Assumption 4.5 (Equicontinuity) There exists a strictly positive map-
ping w: X — RY | such that w(z)m(x,c) is equicontinuous on B, i.e. ¥
a >0,

9, |la—c¢] <7, = sup|w(z) m(z,a) —w(x)m(z,c)| <a, (a,c) € BxB
zekX

Fquicontinuity of a given function such as m(x,%) is a directly verifiable
condition; however, since w (%) will usually be unknown, equicontinuity in-
volves an implicit assumption about the form w (%) can take for a given
specification of m (x,x). Sufficient conditions for this condition are provided
by Manski (1988a, Lemma 7, pp. 109-110) reproduced for reference pur-
poses in Appendix B. The role of this assumption is to introduce appropriate
smoothness in [Y - I(X,c)dE that does not depend on the behaviour of F.

Assumption 4.6 (Boundary) The following boundary condition is satis-
fied:

hm sup/ Y] I(a—|m(X,c)|)dF =0,
OceB
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This is an assumption that ensures that the probability of drawing z’s
such that m(z,c) is close to zero for all ¢ is small in an appropriate sense.
It serves to ensure continuity of [Y - I(X,c)dF.

It is relevant to note that if m (x,¢) is linear (for example because we
restrict our attention to best linear prediction) A4.4-4.6 become immediately
satisfied under regularity conditions given in Appendix B, but identification
can only be to scale so B must not include ¢ and ¢ such that ¢ = ac’ (where
a is a positive scalar). When on the other hand m (%, ¢) is non-linear it is
difficult to derive conditions on I’ ensuring A4-6 will hold. We note that
when the parameter set B is discrete (as in Chapter 1 where the Artificial
Technical Analyst estimates technical trading rules using the first of the
following estimators) consistency only requires A3.

4.2.3 A step function M-estimator

The following proposition provides a simple estimator for the sign of a regres-
sion mapping which resembles Manski’s (1975) maximum score estimator.
A theorem of Manski (19884) is exploited to ensure consistency of the esti-
mator under the assumptions we have introduced. This theorem essentially
extends standard conditions under which M-estimators (Huber 1996) are
consistent to the case where they are step functions of parameters.

Proposition 4.1 Let
bNGargmig—/Y-I(X,c)dFN, (4.3)
ce .

where Fy is the empirical c.d.f. of {yn,mn}ﬁ[:l.
Under Assumptions 4.1-4.6,

Pr <A}im lbny —b] = O) =1 (4.4)

where I (x,b) = I, () almost everywhere.

Proof. Theorem 3’, Chapter 7 of Manski (1988a) applies to by and
ensures

Pr(lim |bn — b] :O) =1
N—oo
with

b= argrcneaé(/Y-I(X,c)dF.
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Lemma 1 in the Appendix ensures that the above is a necessary and sufficient
condition for

I(x,b)=1,, () a.e.

|

Notice that the estimator by is defined as an element of a set which we
show converges almost surely to a parameter b defining a model identical
to the sign of the regression mapping almost everywhere. We have avoided
measurability issues, but it should be noted that here we make the implicit
assumption that by is chosen from this set in a manner ensuring by is a
measurable function of (Y, X). As noted by Amemiya (1985) this is made
possible by a theorem of Jennrich (1969, p. 637).

This is the estimator that has been used in Chapters 1,2 and 3 to estimate
models to be used in investment decisions. It is a particular attractive
estimator for that purpose since even when Assumption 4.1 is not satisfied,
this estimator will converge to models that are ‘good’ in a precisely defined
sense.

4.2.4 A quasi generalised step function M-estimator

A modification of the previous estimator yields another consistent estimator
which is very closely related to what Gourieroux & Monfort (1995) refer to
as a ‘quasi generalised M estimator’ (Definition 8.2, p. 214). The distin-
guishing feature of such estimators is that they optimise objective functions
which themselves contain consistent estimates of certain nuisance parame-
ters (in this case functions). The analysis of Gourieroux & Monfort (1995)
does not apply to our estimator however, because it is a step function of
the parameter. With the following proposition we establish the estimator’s
consistency.

Proposition 4.2 Let A: X — [0,1] be a mapping such that:

B E(Y[I(Y)=11)
A= FWITD = Lo r BT =00 "< 49

Let Ay (z) be an estimated model for A(x) such that:

Pr ( lim sup |Aw () — A(z)| = o> =1

N—>oom€X

Define b%; by:

%, € argmin - / (Aw (2) = Iy) - Iz, c)dFy (4.6)
cc .
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Under Assumptions 4.1-4.6,

Pr <J\}im |6} — b = O) =1 (4.7)
where I (x,b) = I, (x) almost everywhere.

Proof. Lemmata 3, 4 and 5 of Appendix A imply that:

Pr <J\}£noo|bN—b| :O) =1

where

b = arg min — /(A (x) — Iy) - I(x,c)dF.
ceB
Lemma 2 ensures that the above is a necessary and sufficient condition
for

I(z,b) =1, () ae.

Interpretation as generalised binary quantile regression

If the ‘nuisance function’ A (z) is a known constant (Ay (z) = A(x) = a)
this estimator is identical to a standard estimator used in binary quantile
regression, i.e. to fit a model for the a’th quantile of [y conditional on
(see e.g. Manski & Thompson 1989). This is because I (x,b) will be the a’th
quantile of Iy. More generally, Proposition 2.3 of Chapter 2 implies that
I (z,b) will be the A(z)th quantile of Iy conditional on . Clearly then
estimating the sign of a regression mapping when A (z) is a known constant
can be achieved by binary quantile regression. When A (x) is not a known
constant, our problem can be approached using the estimator introduced
here - which may be viewed as a generalisation of binary quantile regression.

One interesting application in which A (2) may be a known constant is
when Y are financial returns Ry in period ¢+ 1 and X are lagged returns.
This is because it seems acceptable to assume that |Ry1| is independent of
the sign of returns Ig,,, (Granger & Ding 1994a, Henriksson & Merton 1981)
in which case A (z) = § and for Ay (z) = A (x) = 1 our estimator coincides
with the maximum score estimator.

Remark 4.1 If it is indeed believed that A(x) = a for all x, there exist
statistical techniques (Zheng 1998) which allow us to judge whether m (x, x)
is a correctly specified model for the a’th quantile of Iy and hence evaluate
whether Assumption 1 holds. It may be possible to extend these results to
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the case where A (x) varies with x to provide a general specification test for
models of the sign of a regression mapping. Given that many optimal deci-
sion rules of interest can be expressed as functions of the sign of a regression
mapping, we would thus also obtain specification tests for models of optimal
decisions.

Financial returns also provide series for which it may be possible to
model A (x) very effectively because the conditional expected value of abso-
lute returns F (|Rey1| | Re, Ri—1, ...Re—7) are highly predictable (Taylor 1986,
Schwert 1989, Granger & Ding 19945, Mills 1996, Fornari & Mele 1994). This

indicates that it may be feasible to accurately model
E (|Rt+1| |IRt+1 ’ Rt7 Rt—h “'Rth)

and hence also A (R, Ri_1,...Ri—7). To be precise, what we would need is a
model converging to A (R, Ri—1,...Ry_7) uniformly on (R, Ri—1,...Ri—7).
While this may be an extreme assumption, it seems reasonable that with
a good model for A (z) this estimator might be an interesting competitor
to the step function M-estimator of the previous section. Of course this
remains to be verified in the context of a specific application.

4.2.5 A smoothed estimator

Horowitz (1992) provides a smoothed maximum score estimator which he
shows has various desirable tractable properties that the maximum score
estimator does not. Analogously, we smooth our simple step function M-
estimator to obtain another consistent estimator.

Proposition 4.3 Let K : R— R be a continuous function satisfying | K (v)| <
00, limy— oo K (v) = 0, limy—oo K (v) = 1.
Let b be an estimator for b defined by:

by Eargmin—/Y-K {M] dFy
ceB . CN

where {{} s a sequence s.t. (x>0 and imy_o (v = 0.
Under Assumptions 4.1-4.6,

Pr <th b5 — b| = 0> =1 (4.8)

where I (x,b) = I, (x) almost everywhere.
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Proof. Let

Notice that for any « > 0 :

IS (¢) — fur (c \</‘ { ( XC))—I(X,C)H-I(!m(x,c)\—a)dFN
[ [ (E2) el | i - e am

Since Pr (m (X, ¢) = 0) and by our assumptions, K is bounded with

m K m(z,c) 1if m(z,c) >0
N0 (N 0if m(z,c) <0
it follows that the first term on the RHS of the previous expression converges

to zero uniformly on ¢ as N — oo.
The second term is smaller than:

k:/ V|- I (a — [m(X,c)|) dFy

uniformly over ¢ (where k is some positive constant).
By equicontinuity, there exists a finite 6, such that for all a, c:

la —c| < 6o = |m(z,c) —m(z,a)| <
Fix @ > 0. Then for ¢ € B such that |a — ¢| < d4
Im(z,¢))| <«
= |m(z,c)| + |m(x,a) — m(x,c)| < 2«
= |m(z,a)| < 2«
Hence:
la —¢| < bq
= / V]I (a—|m(X,c)])dFy < / [Y]-T(2a—|m(X,a)|)dFy

Since B is a compact set, we may define the finite set B, such that for all
¢ in B there is an a in B, such that |a — ¢| < d,.
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Then there exists an a in B, such that for all ¢cin B :
/ Y] I (a - |m(X,c)]) dEy < / Y] I (20 — |m(X,a)|) dEy
So f(.)r all cin B : .
/ Y] 1 (o~ (X, o)) dFy < max / Y- I (20— |m(X, a)|) dFy
‘ By the Strong Law of Large Numbérs as N — oo,

max / Y]+ I (20— m(X,a)]) dFy — ma / Y| 10— |m(X,a)) dF as.

acBy

Hence, for all cin B, for N > N,
S (0) = £ () < kmax [ V] T (20~ [m(X, ) dF
So for N > N,

sup |Sy (¢) — fnv (¢)] < k max / Y| - I(Q2a—|m(X,a)|)dF
ceEB a€By

< ksup / V|- I (20— |m(X,a)]) dF
Since the above holds for all «, for N large enough:

sup S (€)= fi (0} <kl sup [ V11 (20~ [m(X, ) dF
which by the Boundary Condition implies

P ( Jim suplS ()= Ay (0 < 0) =

N—oo cB
Using also the fact that by Manski’s (1988a) Lemma 6, p.106:
<hm sup | f (¢) — (c)]SO)z
N—oocep

it follows that

N—oo ccB

pr ( Jim suplSy ()= (0] < 0) =

By Lemma 5 we obtain that

P li by — bl = =

Lemma 1 now ensures that the above is a necessary and sufficient condition
for

I(x,b) =1,, () ae.



82 CHAPTER 4. SIGN OF A REGRESSION

4.3 Further estimator properties

It would be very convenient to have analytical results characterising the
rates of convergence and asymptotic distribution of the estimators we have
introduced as this would, for example, allow us to make comparisons between
them. As we have been unable to obtain analytical results in this direction,
we now report the results of a simulation study of the properties of the step
function M-estimator and discuss likely properties of the other estimators.
We use the step function M-estimator as a benchmark not only because it
is simpler, but also because it is interesting even when Assumption 4.1 is
violated (and is therefore our chosen estimator in previous Chapters).

4.3.1 Step function M-estimator

Kim & Pollard (1990) show that a broad class of estimators optimising step
functions converge at cube-root rate to an analytically intractable distribu-
tion. We have not been able to show that our step function M-estimator
belongs in this class but it seems reasonable to conjecture that it behaves
in a similar way to the estimators of Kim & Pollard (1990)* given that its
only unusual feature is that it optimises a step function - which according to
Kim & Pollard (1990, p.194) “is the main distinguishing feature of estima-
tion problems that exhibit cube-root asymptotics”. The following simulation
provides corroborating evidence for this conjecture.

SIMULATION 4.3.1

Consider the following DGP, used also in the simulations of Chapters 2
and 3:

Riyv = bo+b01 R +U
U ~ N(0,0% iid

bo 2] 1
Ro ~ N{l_bl,(f [1—(1)1) } }
by = 0.00015; by = 0.0330; o = 0.0108

The parameters of this DGP were determined using OLS to estimate an
AR(1) model on a series of returns drawn from the empirical distribution of
IBM daily closing prices® from 1st January 1990 through to 6th November
1997 (2049 observations).

'The structurally closest estimator to this estimator for which there exists some theory
is the maximum score estimator of Manski (1975). Kim & Pollard (1990) show that the
maximum score estimator converges at cube-root rate to the maximum of a Gaussian
process.

>Obtained from DATASTREAM on the last day in the dataset.
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Suppose the parametric form of the DGP is known, but that the values
of the parameters are not. As discussed, our estimator can only provide a
consistent estimate of the scale of the parameters of a linear model. Hence,
the model to be estimated takes the form:%

m(X,c) =c+ X.

It is worth noting that we now have a more parsimonious description of our

model. An estimate for lb)—(lj is by satisfying:”

by € argmin — / Riy1-Ic+ R dFn (4.9)

We took T = 10* draws from the c.d.f. Fy,, of by to obtain the simulated
distribution ﬁbN and repeated for various sample sizes. In particular, we
set: N = {100 . 2l’1}l7:1. The size of T was chosen so that the standard
deviation oy, of ﬁbN did not change ‘much’ between % and T for any N.

The distributions ﬁbN were then used to investigate various properties of
Fy,, that are of interest.

Asymptotic consistency

According to Proposition 4.5, by is asymptotically consistent so it must

converge to 06%0303105 = 4.5455 x 1073 almost surely as N becomes large. This

is confirmed in Table 4.1, which illustrates the convergence of ﬁbN to b.

N 100 200 400 800 1600 3200 6400 00

103 - ﬁbN 1.2797 1.3502 2.4048 29877 3.9049 4.099 4.4858  4.5455

102 -5, 1.3603 1.3378 1.2694 1.1699 1.0162 0.86258 0.69860 -
Table 4.1 Each column corresponds to a sample size N for which we compute
the mean ﬁbN and standard deviation &, of the simulated distribution of by.

The column corresponding to oo gives the true value b.
Finite sample bias

Table 4.1 also indicates that by is biased downwards. This means that
forecasts tend to lead to long positions more often than they should. This
occurs because the cost of being erroneously long is smaller (on average)
than the cost of being erroneously short for this DGP (since E (R) > 0) and
the asymmetric nature of the risk neutral forecasters’ loss function implied
by this is reflected in the direction of the bias.

bStrictly speaking, we should also estimate the model m (X, ¢) = ¢ — R unless we know
the sign of by, but (for simplicity) we will asume here (and whenever we estimate linear
models) that this is indeed known. Often either theory or related empirical evidence
suggest this sign.

"To fix by at a particular point, we took (both here and later) the value closest to zero
satisfying (4.9).
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Rate of convergence

In our preceding discussion we conjectured that by will converge to a
complicated asymptotic distribution D at cube-root rate, i.e. that:

bo\ a
N3 (bN - b—0> LD (4.10)

If our conjecture is true and op, the standard deviation of D is finite, an
implication is that:

lim N%(be =o0p (4.11)
N—oo
where 03, is the standard deviation of Fy, . While far from being a proof,
verification of (4.11) would provide strong supportive evidence for our con-
jecture.

Figure 4.2. is a plot of (Ng)

%EbN for each Ny which supports (4.11)
and provides an estimate for op, (0

~ (0.13). In this figure op will be the

asymptote to which N %ﬁb ~ tends. If convergence was not at cube-root rate,
this asymptote would not exist.

0.14

0.08f ¢ .

0.06 - B

St. Deviation * N to (1/3)rd

0.04 - B

0.02- Bl

0

. . . . . .
0 1000 2000 3000 4000 5000 6000 7000
Sample Size N

Figure 4.2. This figure provides supportive evidence for the conjecture that
convergence occurs at cube-root rate.

This simple simulation provides supportive evidence for the conjecture
that the estimator converges at cube-root rate. However, our simple simu-
lation does not even begin providing a characterisation of the class of DGPs
for which this will be the case - an issue we must leave for future research.

Asymptotic distribution
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That D is a non-normal distribution is clearly illustrated by the following
QQplot of a normal distribution and the distribution of N §FbN for N =
6400.

Normal QQplot
T

T T
e +

.
a2t
s

Probability
)
@
S
T

| | | | | | |
-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
Data

Figure 4.3. This figure plots the quantiles of Dp;. The axes are set so that
quantiles of any normal distribution lie on a staight line.

It may be feasible to obtain a more precise characterisation of the asymp-
totic distribution of by using the results of Kim & Pollard (1990). However,
they do not provide results which would allow estimation of this asymptotic
distribution and hence this exercise is of limited value since it cannot provide
the basis for asymptotic inference.

4.3.2 Quasi generalised step function M-estimator

In addition to the Assumptions required for consistency of the step function
Me-estimator, consistency of this estimator requires knowledge of a model
for A (z) satisfying the requisite almost sure uniform convergence condition
of Proposition 2. We conjecture that when this condition is indeed sat-
isfied, this estimator will be more efficient than the simple step function
Me-estimator. This is because we would expect use of any additional avail-
able information regarding the structure of F' to improve our estimators
and A captures some of this structure. Note that the structure captured
in A is still weaker than that of uy-. To illustrate, suppose for simplicity
that Ay (z) = A(2); then for reasonable distributions of U, Iy takes the
same values as I,,,, with positive (possibly even large) probability. For all
observations of (yn,x,) such that this is the case, the realised model er-
ror u, does not affect the values of the estimator which will therefore be
less volatile. Hence we would expect that as An converges, the generalised
binary quantile regression estimator is less volatile than the simple step
function M-estimator.

No further properties of this estimator can be derived analytically, as the
intractabilities of the simple moment extremum estimator are compounded.
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4.3.3 Smoothed estimator

This estimator has been designed to modify the simple moment extremum
estimator analogously to the modification Horowitz’s (1992) smoothed max-
imum score estimator provides to the maximum score estimator of Manski
(1975). Based on this fact, we conjecture that if we make certain additional
assumptions analogous to the conditions of Horowitz (1992), this estima-
tor will be asymptotically normal and convergence will take place at a rate
which is faster than cube-root. Proof of this conjecture is a particularly de-
sirable goal for future research, since it would allow us to conduct asymptotic
inference about the behaviour of 1, .

4.3.4 Assessment of the estimators

The proposed estimators are attractive when the objective is to estimate a
model the conditional mean of which has the same sign as the ‘true’ regres-
sion mapping . We have shown that the proposed estimators are robust at
achieving this in the sense that they lead to models with the desired property
even under relatively severe mis-specification. In particular, standard esti-
mators such as least squares, (pseudo-) maximum likelihood and Bayesian
estimators are only likely to perform well when m (x, %) is correctly speci-
fied for the conditional mean, i.e. when Assumption 1 holds for w (z) = 1.
Confidence in this stronger version of Assumption 1 requires a much greater
degree of prior information about the behaviour of p,- that may not always
be available. Hence the estimators previously introduced will in general be
much more robust than ‘standard’ estimators.

In any case, even in the restrictive cases where we believe that we have
an accurate model for the conditional mean, standard estimators are not
necessarily the best way forward. This is because the sign of the estimated
model’s conditional mean may be badly estimated, even when the condi-
tional mean is estimated well. Indeed, it is quite a general observation that
functions of estimates are badly behaved (see for example the simulations
in Chapters 2 and 3); a variety of estimators have been developed to get
around this problem, mainly by taking parameter uncertainty into account
when providing an estimate of the desired function (see e.g. Zellner (1978),
Park & Zellner (1979)). Because our estimator directly estimates the sign
of the conditional mean, it does not necessitate accounting for parameter
uncertainty, making it more convenient.

Comparing the three estimators we propose, we suggest the step function
M-estimator as the benchmark because (i) it is much simpler than both
other estimators; (ii) it is useful even when a good model for A (x) cannot
be postulated; and (iii) it has some desirable properties in the risk neutral
forecasting context even when Assumption 4.1 is not satisfied. Of course if
a good model for A (z) is available there is a good case for using the quasi-
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generalised modification. However, as we show in the next Chapter, these
estimators are difficult to compute and while a specially designed algorithm
is proposed, it is a definite advatage of the smoothed modification that it
is easier to compue; this advantage is reinforced by the fact that it may be
possible to derive conditions under which it converges at a faster rate to a
tractable asymptotic distribution.

4.4 Applications

We now turn to examples of situations where the sign of a regression mapping
is the object of interest. The current practice in most of these situations
is to simply derive estimates for this sign from estimates of the regression
mapping itself. However, for reasons we have just discussed, these estimates
may be quite poor.

In the first two applications we illustrate situations where it is desirable
to estimate the sign of a mapping jiy; where iy ; (z) = pty (z) — a; for some
regression mapping py and a known constant a;. The third and fourth
illustrate situations where it is desirable to estimate the zeros of py-; - which
are simply obtained by estimating the sign of fiy; and —py; and finding
the z’s such that neither are positive. Note that for these applications we
require that the postulated model m (x,¢) is correctly specified for the sign
of pty +a;. But even if we impose the unnecessarily strong requirement that
this holds for all a;, this remains a substantially weaker assumption than
that of correct specification of m (x, ¢) for py-.

4.4.1 Estimating solutions to discrete decision problems

Brandt (1999) proposes a nonparametric method for estimating solutions
to decision problems which can be described in terms of Euler equations.
However, discrete decision problems have solutions which are not solutions
of Euler equations and hence Brandt’s method is inapplicable. We show that
some decision problems of this form are solved by known functions of the
sign of a regression mapping and hence that the methods introduced in this
paper can be used to estimate solutions to such discrete decision problems.

A broad class of binary choice dynamic programming problems of agents
at time 7 can be written in the general form:

T
D E ; BT [(RY — Rb) d' + RY] |z (4.12)

where T is possibly infinite, 0 < 8 < 1 is a discount rate, E (x| X;) is the
conditional expectation of a random variable with respect to z, (information
at time 7) and R is the (random at t — 1) reward to action j obtained by
an individual choosing action j at time ¢.
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Many such problems have the property that {dt = 1} is an optimal action
at time t if and only if:

F (S/rt_l'_l‘Xt) 2 ag (413)

where Y}, 1 is the realisation of the agent’s value function if d* = 1 is chosen
at time ¢. In particular, this is the form of solutions to optimal stopping
problems - that is problems in which if the optimal decision is d; = 1 (stop)
at t, then d; = 1 is also optimal for 7 > t (see e.g. Eckstein & Wolpin (1989)
for a review of the substantial literature on problems of this form).®
Suppose now that E (Y;41]|X;) is unknown to an agent solving this prob-
lem who must estimate his optimal decision using a sample of past data
{Yn, T}, Then as is evident from (4.13) it suffices that he estimates the
sign of the regression mappings 1y, | (2¢) = E (Yys1|i) — a for each t.

Example 4.1 A canonical two period job-search problem

Let RY = b be the reward from remaining unemployed at time t = 1,2
and Ri = Y7 be the reward from being employed in the first period at a
known wage Y1. If a job is accepted in the first period, no new job offers are
received in the second (employment leaves no time to search for new jobs)
but the worker can keep the job he has. However, if a job is not accepted, a
new wage offer Ys is received. The reward from being employed in the second
period is then:

I Y ifdt =1
L7 Yaifdl =0

where d* = 1 indicates a job offer is accepted in period t and d* = 0 indicates
it is not. Note that at t = 1, Yy is a random variable.

The agent’s optimisation problem at t = 1 is a special case of (4.12)
which may be more simply written as:

d (Y1 —b) +b d? (d' - (Y1 — E (Y- E(Yslz) —b) +b
a3 & (Vb b f[d (& (1~ B (Yale) + B (Yale) —b) + ]

where [3 is his discount factor and x is a vector containing public information
at t = 1 predicting the distribution of wages Yo (such as unemployment
rates).

The optimal decision rule (trivially obtained by backward induction) is:

d = 1ifYy>bandd =1
> = 1ifYo>bandd =0
d' = 1if E(Ya|x) < (1+p)Y; —b.

%A very different dynamic programming problem with a solution of the same form is
the ‘cost-loss ratio’ problem extensively analysed by meteorologists - see for example Katz
& Murphy (1990).
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which can be solved without knowledge of E (Y2|X1) if the sign of py (x) =
E (Yalz) — (1 + B) Y1 + b is known. Our estimators can therefore be applied
to the estimation of this agent’s optimal decision if a sample {yn,mn}gzl
of draws from the distribution of (Y,X) are available. For example, the
agent might need to estimate the sign of py (x) when x is a set of variables
describing the state of the business cycle. ¥

4.4.2 Estimating solutions to continuous decision problems
with discrete solutions

When decision spaces are continuous, optimal actions will not be charac-
terised by Euler equations when they are corner solutions. The following
example a special case of which plays a central role in Chapter 2, illustrates
the fact that estimation of the sign of a regression mapping will sometimes
suffice for optimal decision-making in such contexts.

Example 4.2 Risk Neutral bond-portfolio investment decision with
transaction costs

Consider a Risk Neutral Investor’s single-period problem of allocating
wealth between a ‘riskless’ asset such as a bond and a single risky asset (or
portfolio). This can be described as:

atren[?;l] E {T/Vt {(1 + Rey1) ar + (1 + R{—&-l) (1- at)} ]xt} — kW ‘at — aH
(4.14)

where Ryyq1 are returns to the portfolio from t to t + 1 that are predictable
with R{ 41 are the returns to the bond, Wi is wealth at time t, K are
proportional transaction costs, a; is the proportion of Wy held in the asset
before a decision is made at t and a; is the proportion of wealth chosen for
investment in the risky asset. The investor can borrow at the riskless interest
rate up to (I —1) % 100% of his wealth (I > 1) and take a short position in
the asset of a size up to s 100% of his wealth (s > 0).1Y
A solution to (4.14) also solves:

max E (Rf,|X:) a; — k|ay — af (4.15)

at€[—s,l]

where RY | | = Ryy1 — R{-i—l are ‘ercess returns’.

9Granger & Pesaran (2000) give an example of a single-period decision problem that
could be solved by estimating the sign of a regression mapping.

10The ‘Risk Neutral Forecasting’ decision problem of Chapter 2 is a special case of this
with v = 0 and R = 0.
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Let py (x) = B (RE 1| X = ) —k and fry o (x) = E (Rf, 1| Xy = @) + k.
A solution to (4.15) can be expressed as:

=5 if 0 > iy 5 ()
ar(z) = ¢ ap if pryo(x) > 02> pyy (z) o (4.16)
Lif pyy (x) >0

So we can estimate optimal decisions ay by estimating the sign of the re-
gression mappings fy 1 (x) and fry o (*).

4.4.3 Estimation of the zeros of a regression function

The set of Zeros of iy is:
Z={z:py (x) =0,z € X} (4.17)
which is identical to

{@: Ly, () =1 (—py (), € X}. (4.18)

Evidently, our estimators can be used to estimate the set Z by estimating
the sign of the regression mappings py- and —py- (note that if Assumption
4.1 applies to (m, py ) then it will also apply to (m, —py-)) and obtaining

Z={a: I(z,by) =TI (2,by) v € X} (4.19)

where I’ (x,c) is a model for I (—py (x)) with associated estimated param-
eter by and I (x,c) is a model for I (py (x)) with associated estimated pa-
rameter by. We now discuss various interesting applications in which Z
may be useful. As we have noted in the introduction, an alternative com-

putationally convenient non-parametric approach for estimating Z can be
found in Haerdle & Nixdorf (1987) and Tsybakov (1988).

Calibration

Suppose X in (4.1) is deterministic, gy is some unknown function and
{y; }3.7:1 are J > 1 observations of Y drawn from Fy|X = z* (z* unknown).

The calibration problem is the task of estimating x* given {yj}‘jjzl and a

sample {yp, mn}gzl of draws from F'. The ‘classical’ approach to calibration

Eisenhart 1939) draws on the fact that the set:
( )
¥y
Zl= {m:,uy(m)—jleJ:O,xeX} (4.20)

should provide a good estimate for z* under weak conditions on Fy|X = x*.
Since py- is not known, however, the ‘classical’ approach relies on assuming
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that gy () can be substituted with a ‘good’ estimated model m (z,¢) in
this expression, so that

~ T
le{m:m(m,/c\)—]_TIyJ:O}

is a ‘good’ estimate for x*.

However, for reasons closely related to the point made in the Simulation
of Chapter 3, this does not seem to be the case (Kruthckoff 1967) and
this approach is now considered questionable. Consequently, a number of
new estimators have been proposed (Brown 1979, Hunter & Lamboy 1981,
Kalotay 1971, Lwin & Maritz 1980), each with its own advantages. The
estimators developed in this paper can be used to directly estimate Z' which
itself should be a good estimate for x*. Hence, our estimators provide an
interesting addition to the pool of available estimators for this problem which
may be particularly attractive when no model is certain to be a correct
specification for gy .

Econometric equation inversion

Let X; denote the 7’th element of X and X ; denote (X1, ..., X; 1, Xi+1, -, X1)-
It is sometimes desirable to estimate the mapping x; = z (y*, z_;) such that
py (X—; =x_;, X; = x;) = y* under the assumption that the relationship
between Y and X is characterised by (4.1). This is sometimes referred to as

a problem of econometric equation inversion, since the inverse of iy (z;, x—;)
with respect to x; needs to be estimated. This can be treated as a problem
of estimating the zeros of a mean regression model, as the following two
examples illustrate.

Decisions with Targets Consider the following classic problem in the
control of passively observed systems which arises routinely in Economic
models. A decision maker has some control over the distribution of Xj;
which he uses to ensure that the expected value of Y is equal to a ‘target
level” y*, given any realisation of X ;. It is typically assumed that py- ()
is not affected by any changes in the distribution of X; which the decision
maker effects. In this case, if py is unknown, the decision maker will be
interested in estimating:

Z2={ai: py (w0 ) —y* =0,2 € X}.
which is a set estimable using the estimators we have proposed.
Macroeconometric models Substantial research effort has been devoted

to analysing the implications of econometric equation inversion in the con-
text of macroeconomic models - see for example Hendry & Ericsson (1991),
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Ericsson et al. (1998) and the references therein. The standard setting in
which this arises is when (4.1) is assumed to hold for money demand as a
function of prices, interest rates etc. Based on these assumptions, it is often
required to obtain an expression for prices (or interest rates) as a function
of money demand and interest rates (or prices).

Two common ways of estimating such a relationship which are now recog-
nised as problematic are:

1. Invert m (z, c) with respect to x; and estimate the model x; = m/ (y, x4, ¢)
as if it were a correctly specified model for py, (y, ;). Of course, this
will only be the case under very special assumptions such as joint nor-
mality of (Y, X), which are probably a very bad approximation to any
interesting reality. Estimation following this course may therefore lead
to inconsistent estimates.

2. Invert an estimated model m (z, by) for py () with respect to x; to ob-
tain an expression of the form x; = m/ (y,z_;,bx). This will generally
deliver bad estimates for yy, (y,z_;) except under special conditions,
even though it is sometimes used for this purpose. It is more natural
to expect it would serve as a good estimate for

Z3 =y py (g, 0_) —y* = 0,2 € X}

although for reasons related to those discussed in relation to Calibra-
tion, this should also be questioned, particularly if adjustments are
not made to account for parameter uncertainty.

Evidently, the only relationship that can be estimated in a satisfactory
way is Z (z_;,y*), which can also be achieved using our estimator. An
example of Z (x_;,y*) could give the prices x; conditional on which, for a
given level of income and interest rates (z_;) money demand Y is expected
to equal y*. The advantages are, as always, parsimony and consistency
under weaker conditions on correct specification.

4.5 Conclusions & future directions

In this chapter we develop estimators for a semiparametric model of a re-
gression mapping when our interest focuses on the sign of this mapping.
We have given a number of examples of important modelling situations in
which this is the case and have argued that in these situations the proposed
estimators are particularly advantageous.

The reasons for this are threefold: Firstly, it will be easier to correctly
specify a model for the sign of the regression mapping and therefore obtain a
consistent estimator for it. Secondly, as illustrated in the context of our sim-
ulation, models for the sign are likely to be more parsimonious than models
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for the regression mapping; and thirdly, estimators for the sign derived from
estimators of the regression mapping are likely to require some modification
to account for parameter uncertainty. While a convincing assessment of
the value of these methods is pending their use in an appropriate empirical
application, these arguments indicate that they might be useful in a broad
range of such applications.

The three semiparametric estimators we propose are consistent under
weak conditions, including for example arbitrary heteroskedasticity of errors
and a non-functional relationship between Y and X. While the properties
of the benchmark step function M-estimator and the quasi-generalisation
thereof seem to be hopelessly intractable, the properties of the smoothed es-
timator may be tractable and we intend to investigate this in future research.
This is particularly interesting, since it could provide a route to conducting
asymptotic inference about the sign of a regression mapping and therefore
also about the form of those optimal decisions that can be expressed as
functions of this sign. Of course, it may be useful to also consider how other
stages of the modelling process might be modified to improve modelling of
the sign of regression mappings. Inevitably, this will require accumulation
of practical experience with this particular problem.

4.6 Appendix

4.6.1 A. Lemmata used in proofs of propositions in text

Lemma 4.1 Let h: X — Ry be any strictly positive function.
Suppose Assumption 4.1 is satisfied.
I(x,b) =1, () almost everywhere if and only if:
beargiréig—/‘h(X)-Y-I(X,c)dF. (4.21)
Proof. =
- /h(X) Y I(X,)dF = - /h(X) iy (X) - (X, ¢))dF
> = [0y (0)  T(X.0) Ly (X0
> = [0y (X)L ()P,
By A4.1 there is a b such that I (x,b) = I, (x). Clearly in this case,

the above relations hold with equality. Therefore if ¢ is a minimising value,
the above relations must also hold with equality and hence:

[ 00y () 10G0aE = [ B0 -y (X) - L, (X)aF
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This implies that I(X,c) = I, (X) almost surely.
“~=
We have already shown that:

- /‘h(X) Y I(X,0)dF > — /‘h(X) Ay (X) - L, (X)dEF

Hence if T (X,b) = I, (X), b is a minimising value of the LHS. m

Lemma 4.2 Let A: X — [0,1] be a mapping such that:

B E(YIIL(Y) = La)
A = I = Lo EQvIE ) =0 "€ 4B

Suppose Assumption 4.1 is satisfied.
I(x,b) =1, () almost everywhere if and only if:

b€ argmin - / [A(X) = Pr(I(Y) = 0|X)] - I(X, c)dF (4.23)

Proof. Notice that for any function h: X — R:
/h(X) Y- I(X,¢)dF = /h(X) py (X)) - I(X, 0)dF (4.24)

where Fx is the c.d.f. of X.
It is easy to show (see Chapter 2, Proposition 2.2) that:

py () =
E(Y[L(Y)=12)-Pr(I(Y)=0lz) [E(Y[|I(Y)=0,z)+E(Y|(Y)= 1,(92)]25)
Define the strictly positive function h: X — R, | by:
() = 1
W= BT =00 + BV = L)

Using (4.24),(4.25) and (4.26).

(4.26)

/' h(X)-Y - I(X,c)dF = / [A(X) = Pr(I(Y) = 0|X)] - I(X, )dF

Lemma 1 can now be applied to obtain the desired result. m
Lemma 4.3 Let
) = Iy —A@@)) - I(z,0),
0) = (Iy — Ax (x)) - I(z,¢),
v(ir) = Iy —A(x),
( ) = Iy—AN(l').



4.6. APPENDIX 95

If An(x) converges uniformly to A(x) almost surely, the SLLN holds, and
By, is a finite cardinality subset of B then

Pr <J\}1m max /hN(X, c)dFy — / h(X, c)dF‘ = O) =1 (4.27)
—0o0ceEB |, .
and
Pr (A}im max /UN(X)dFN - /v(X)dF‘ = O) =1. (4.28)
—00 CEDq |, §

Proof. As the proofs of (4.27) and (4.28) are identical, we prove only
(4.27).

Since hy(X,c) is a linear function of Ax(X), the assumption directly
implies that for all ¢ > 0 there exists a IN. such that for N > V., uniformly
on (X, B):

|hy(X,¢) — h(X,c)| < e as.

So:
/]hN(X,C) —h(X,c)|dFy < /edFN =c

Since [ |hn(X,c) — M(X,c)|dFy > | [ hn(X,c) — h(X,c)dFy/| this implies:

’/ I (X, ) — h(X, c)dFN’ <e

~ Pr < Jim ‘ / ha(X,¢) = h(X, c)dFN‘ _ o> 1 (4.29)
The Strong Law of Large Numbers ensures that for any ¢:
A}im ‘/h(X, c)dFy — /h(X, c)dF’ =0 a.s. (4.30)

So combining (4.29) and (4.30), for any c:

Jim ’/ I (X, c)dFy — /h(X, c)dFN‘ + ‘/h(X, o) dFy — /h(X, c)dF’ 0 as.
|, . : . (431)

Now notice that since |a — b 4+ |b — ¢| > |a — ¢,
‘/hN(X,C)dFN— /h(X,C)dF‘ S ‘/hN(X,C)dFN— /h(X,C)dFN’

i
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Using this fact and (4.31), we obtain that for any ¢ € By:
‘/hN(X, c)dFy — /h(X,c)dF‘ — 0 a.s.

Lemma 4.4 Let

hz,c) = v(z)-I(z,c),
hy(z,c) = won(x)-I(z,c),
v(ir) = Iy —A(x),
un(z) = Iy — An ().

If An(x) converges uniformly to A(z) almost surely and A2-6 are satisfied,
then

Pr{ lim max
N—oo cEB |,

/ﬁMXmMEmi/MXmM#:ﬂ>:L

Proof. We follow the logic of Manski (1988a), Lemmata 5 and 6, pp
104-108:

‘/mm@memm‘

So
’/hN(X,CL) —hN(X,C)dFN’ S / ’UN(X)’dFN (432)
. JX(a,c)

where
X(a,c)={r e X :m(z,a) <0 <m(z,c) Um(z,a) > 0>m(z,c)}.

For o > 0 and ¢ € B, by the equicontinuity assumption (A5) which for
notational simplicity (but without loss of generality) we assume holds for
w (x) =1, it follows that there exists a §, such that for all (a,z) € (B, X)

a—c <6 :>{ m(z,c) > a=m(z,a) >0 }

m(z,c) < —a = m(z,a) <0
Hence there exists a ¢, such that for all (a,z) € (B, X)

la —c| < bo = X(a,c) CXeg ={z € X —a<m(z,c) <a}. (4.33)
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Using (4.32) and (4.33):

la—c| < 6o = ‘/ I (X, a) — hy (X, c)dFN‘ < /X o (X)| dEx
By identical reasoning, this condition holds if we replace hy (z,¢) with

h(z,c), vy (x) with v (x) and Fy with F.
Hence,

la —c| < 6o = ’/ MX,a)— h(X,c)dF‘ + ’/hN(X,a) — hy(X,c)dFy
< / (X[ dF + / on (X)|dFy (4.34)
J Aca J Xea
Now notice that:

‘/ I (X, a)dFy — / WX, a)dF

_ ’ [ (hn(X,a) — hn(X,0))dFn — [ (MX,a) — h(X,¢)) dF+ ‘
- + [ hn(X,c)dFy — [ h(X,c)dF

= ‘/ I (X, @) dFy — /h(X, a)dF‘
< ‘/ ha(X,a) — hy(X, c)dFN‘ + “/h(X, a) — h(X, c)dF‘
+ ’/ hn(X,c)dFN — /h(X, c)dF‘

Hence combining the above relationship with (4.34):
la —c] < bo=

’/ h (X, a)dFy — / h(X, a)dF’
< /Xa (X[ dF + /Xa o (X)] dEy + ‘/ I (X, ¢)dFy — / h(X, c)dF‘

Now Compactness of B implies that there exists a B, C B such that
card(Bgy) < oo and for any a € B there is a ¢ € B, such that |a — ¢| < d,.
Therefore for all a € B,

‘/h]\/ (X,a)dF — /h(X,a)dF‘ < m%x/ \U(X)]dF+m%x/ lon(X)|dF N
. . ce o, o ce a, o

+ max /hN(X,c)dFN—/h(X,c)dF‘
cEBqo . B
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By Lemma 1, for all o, 7 > 0, there exists a Nay < oo such that for all
N > Ngy

sup

acB

/hN(X,a)dFN— /h(X,a)dF’ < Q[m%x/ |o(X)|dF +n
. . c€Ba J X o

< 2[Sup/ [0(X)|dF 47
Xca

cEB.

Now the Boundary condition can be written as:

lim sup/ Y|dF =0

a=0ccpB Jea

implying that as (a,n7) — 0 the required result is obtained. m

Lemma 4.5 Assume
/ (Ay (2) — Iy) - I(z, c)dFx

converges uniformly almost surely to

/(A (@) — Iy) - I(w, c)dF

as N tends to infinity and A2. Then:
: « 7
Pr (J\}lm ’bN—b ‘ —O> =1

Proof. See for example Amemiya (1985) Theorem 4.1.1 as modified by
footnote 1. m

4.6.2 B: Sufficient conditions for assumptions required for
asymptotic consistency

Sufficient conditions for Identifiability

We give such conditions on the basis of the following Proposition which
is a simple extension of a result in Manski (1985).

Proposition 4.4 Sufficient conditions for Assumption 4 are:
1. For some 1T €T, there exists w : X — R such that:
T(m(z,c)) =w(x)c, (z,0) €(X,B),

and
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2. The support of Fx is not contained in any proper linear subspace of

R*, and

3. by #0 for somel andVX_; = (X1,Xo, ..., Xj—1, Xj21, ... Xk) the distri-

bution of X;|X | has everywhere positive Lebesque density.

Proof. The conditions we have assumed imply by Manski (1985, Lemma

2, p. 317) that for all ¢ # b,
/ dFx >0
Xo={rerti1 [;u(;)'c > 0] # 1 [w(@)b > 0]}
Let:
X! = {m ERM: 1 [w(w)e> 0] # 1 [w(x)b > o}}

For ¢ # 0, by the Proposition’s conditions 2 and 3.

/ dFX:/ dFx > 0.
Jx: JXx,

/dFX:1—/ dFy
Jx: Jx.

For ¢ =0,

Hence for all ¢ # b it is the case that [X, dFx > 0 which implies:

/R-l [w(X) ¢> 0] dF # /R-l [w(X) b>0]dF
so by condition 1

/'R-l[m(x,c) > 0] dF + /'R-l[m(x,b) > 0] dF

(4.35)

and hence the minimum of the r.h.s. must be unique, ensuring identifiability.

|
Sufficient conditions for Equicontinuity

By Manski (1988a), Lemma 7, pp. 109-110:
For some 7 € T, at least one of (1), (2) or (3) hold:

1. X x B is a compact metric space and 7 (m (%, %)) is continuous on it.
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2. 7(m(x,%)) is bounded on X x C and m(x,x*) is convex on C for all
xr € X, where B C C C R¥ and C is an open convex set.

3. 7 (m(x,c)) = w(z)e, (z,¢) € (X,B), w: X — RF
Sufficient conditions for the Boundary condition

According to Manski (1988a, Lemma 8, pp. 110-111) the following three
conditions must hold:

1. Forsome 7 € T, there exists aw : X — Z C R¥ such that 7 (m(z,¢)) =
w(@)'e, (x,¢) € (X, B),

2. V (¢,w) € BxV, where V is the range space of | R|, the probability mea-
sure Fw(m)/c|R is absolutely continuous w.r.t. the Lebesgue measure p

dF, R
w(z)’c' < )\7

and also 3 A < 0o s.t. m

3. [|R|dFg exists



Chapter 5

Global optimisation of the
average of random step
functions

SUMMARY

The average of a large number of random step functions is a discontin-
uous surface with an extremely large number of local optima even though,
as the number of step functions tends to infinity, convergence may be to
a smooth surface with a unique minimum. We propose an algorithm for
computing the minimum of such a surface since standard gradient-based
optimisation methods are inapplicable. The algorithm is based on the idea
of substituting the discontinuous surface with a sequence of continuous sur-
faces that converge to it, yet are easy to minimise sequentially. Conditions
under which the algorithm converges to a global minimum are provided and
its performance is evaluated in a simple but relevant application.

5.1 Introduction

In this Chapter we study the significant difficulties involved in computation-
ally minimising functions of the form

fvle) = —/Y-I[m (X, )] dFy (5.1)

where Fy is the empirical distribution function of (Y, X) compiled using
N observations from F, the c.d.f. of (Y, X) and m (X, c) is some real val-
ued random function. [ is an indicator function taking the value 1 if the
expression in brackets is positive and zero otherwise. We are interested in
obtaining the minimum by of fy(c) for c € B.

101
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Our interest in this problem clearly arises from the fact that the simple
step function M-estimator of Chapter 4 used throughout this thesis min-
imises a function of this form. We will explain why fx (c) is difficult to
minimise and - based on this explanation - propose an optimisation algo-
rithm designed to perform well given the characteristics of fn that we will
establish. A theoretical convergence result is established and the algorithm
is evaluated in the context of estimating a simple Risk Neutral Forecasting

Model.

The problem we address may arise in computing a variety of economet-
ric estimators, including the maximum score estimator of Manski (1975).
Indeed, it has also been encountered by LeBaron (1998a) and Pictet et al.
(1996).

5.2 Source of computational difficulties

The discontinuity of the integrand in (5.1) makes the computational deriva-
tion of by non-trivial. A direct implication of this discontinuity is that
the range of the objective function must necessarily have finite cardinality.
This is reassuring in as much as it implies that by always exists, but is also
troublesome in that it implies its computation will involve the optimisa-
tion of a discontinuous function, which precludes the use of gradient descent
methods. Considering that the randomness inherent in the sampling pro-
cess is also carried over to the objective function, it becomes evident that
fn(c)will be a highly rugged function with many local extrema even when
JY - Im(X,c)]dFis continuous.!

As N tends to infinity, our assumptions in Chapter 4 ensure that fy(c)
converges uniformly almost surely to a continuous function and hence com-
putational optimisation should become easier. For small N, minimisation of
fn(c) is trivial since it takes on a small number of values in B. To illustrate
this, think of the simple case where m is a linear function, i.e. m (z,¢c) = 2/c,
x € X, c € B. Then the N hyperplanes defined by the collection of vectors
{c:alc=0}_| decompose B into at most N4™(X) 41 regions in each of
which fy(c) must be constant as a function of ¢.2 Unfortunately, it turns
out that the sample sizes we wish (or are able) to use in practice lie in
the intermediate zone where optimisation of fxy(c) is difficult and it is this
case that we will consider. To get a feel for the properties of the objec-
tive functions we typically deal with, consider Figure 5.1 which is a plot of
J Ria - Ileo+ 0.1R, + coRy 1] dFN where Fy is the empirical distribution
of the IBM series described in the simulations of previous Chapters.

! Assumptions A4.2-4.6 of Chapter 4 are sufficient to ensure this by Manski (1988ag,
Lemma 5, p.104).
2 A similar point, but in a different context, is made by Manski (1985, p.320).
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Figure 5.1. This objective function has a large number of local extrema and its
discontinuities preclude the use of most sophisticated optimization procedures to
find its global maximum.

We have tried a variety of optimization techniques (such as simplex
search, gradient descent and a genetic algorithm) on this type of problem
but they have all drastically failed to converge to a value for by which does
not heavily depend on initial conditions. This problem has also been noted
by LeBaron (1998a) and Pictet et al. (1996) for similar objective functions
and, along with the lack of a theoretical characterisation of the statistical
properties of by, has probably been the most important obstacle to the
widespread use of the intuitive estimator proposed in Chapter 4.

5.3 Proposed algorithm

The computational procedure we propose is based on minimising fx by
combining a procedure for finding a point close to the global minimum with
a local search. To achieve this, suppose there exists a sequence of functions

N J

{f]]\,} . s.t. (i) it is ‘easy’ to minimise f} globally, (¥) the minima of
i=0

£l and fIT are ‘close’ for all j and (iii) f3 (c) = fn(c), ¢ € B. If we

can find such a sequence, we can minimize f§; globally using only a local

search and the global minimum of fzj\,_1 as a starting point. Hence, a global

search is required only for f$ and by construction this is ‘easy’. The difficuls
problem of optimising fx is thereby replaced with a sequence of J + 1 easy
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optimisation problems.?
A sequence of functions conjectured to have these properties is defined

by

. -1
fl(e)=— /Y- <1—|—exp <—#>) dFn, j=0,1,...,J,

where {CJ }‘j]:o is an appropriate sequence of strictly decreasing positive

constants. The function fJ]V (c) is a smoothed version of fx (c) obtained by
replacing the step function in (5.1) with a sigmoid function the steepness of
which is controlled by ¢?.* Using this sequence of functions, the algorithm
for minimising fx (c) involves the following steps:

Step 1. Set (¥ as described in Appendix B to ensure that a large propor-
tion of the values of ™X:9 Jie in a region of the domain of (1+exp(—y))~*
in which this function has some curvature. We illustrate the impact of this
smoothing in Figure 5.2 which is a plot of —f% (co,c2) with m and Fy as
defined in Figure 5.1

Mean Profits
1% ]

cl

c2

Figure 5.2. Although this objective function has more than one maximum it is
sufficiently smooth for standard optimization procedures to be efficient in locating
its global maximum.

To compute the minimum of f](\),, optimisation methods that work well

globally should be used, since f])V has a plethora of local minima. In partic-
ular, we propose the use of a genetic algorithm to find an initial minimum

3Thanks are due to Domingo Tavella for a discussion which led to the development of
this algorithm.
"This idea also underlies the smoothed estimator of Chapter 4.
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(see Dorsey & Mayer (1995) for evidence on the suitability of such an algo-
rithm) which will then be used as a starting point for a simplex search. The
minimum obtained from this global search is our computed estimate for the
minimum of f3.

Let j = 1 and proceed to Step 2. Denote the computed estimate of the
minimum of fJJV as bl.

Step 2. Using bl as a starting point, compute an estimate for:

. —1
Wl caremin— [ Y- 1+ex —M dF
N & cEB P Cj+1 N

where (11 < (7 and ¢7 = 0.
Step 3. If j = J, end; otherwise, let j = j + 1 and return to Step 2.

5.4 Algorithm performance

An immediate objection to the use of the algorithm presented is that it

.y J
will not be possible to verify whether elements of the sequence {bgv} L, are
]:

sufficiently close to each other for a good approximation to bg\, to be in the
vicinity of bg\f 1 and therefore ensure the necessity of only a local search.
Whether or not this happens will of course be an empirical issue and will
depend on the interaction of the size of IV, the form of F' and m as well as the
efficiency of the computational procedures used. We will provide sufficient
conditions to rule out this problem and since these conditions are difficult
to verify, we complement them with empirical evidence suggesting that the
procedure performs well for various N in that it converges much faster than
grid searches.

5.4.1 Analytical results

The following proposition states that if the minimum of the population
analogue of the objective function is a continuous function of the smoothing
parameter, the problem described can be ruled out when N is large.’

Proposition 5.1 Define:

[ (1o (-220)) "

flo) = /Y-I[m(X,c)}dF,

=
.
—~
o
&
Il

>Of course, as N becomes large the original objective function becomes increasingly
smooth and therefore some of the computational difficulty disappears. However, it would
be disconcerting if our algorithm did not work even when N was large.
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where (7 is a constant.
Define also:

= in — f;
arg min —f; (c),

And the sample analogues f]jv (¢), fn (¢) and bgv respectively.
Let bl be a numerical estimate for b, .

If:

1. Assumptions A4.2-4.6 of Chapter 4 are satisfied.

2. f(c,Q) is a quasi-concave function, such that there exists a Dy : X —
0,00 ) with [ D (X)dFx < oo and |Y - (1—|—exp (—@))71
D¢ (z), for all (x,c) in X x B.

<

3. The optimisation algorithms satisfy:

(a) The optimum of 3 can be computed exactly (i.e. b2 =% ),

(b) For every j > 0, optimisation works in an e-neighbourhood of the
solution, i.e. for a starting point m and some positive constant

e,

‘ﬂ'—bg\]‘ <& = b.(j,N) :bgv.

(c) For every j > 0, the starting point m for optimisation of fjj\, 15
given by bl 1.

Then:
There exists a strictly decreasing finite sequence of positive constants

{Cj};.]zo, with ¢7 = 0 such that

Pr< lim [ — bw]| :o> =1
N—oo

Proof. See Appendix A. =

While this proposition is reassuring, the quasiconcavity assumption is un-
satisfactory because we cannot provide conditions on our primitives {F, m}
which would guarantee it holds. Furthermore, it is a property which is com-
putationally costly to verify using Monte Carlo simulations even in simple
cases." We conclude that while the usefulness of the computational algo-
rithm proposed can only be evaluated in the context of a specific application,
it is intuitively sensible, will work under reasonable (if unverifiable) condi-
tions and has been found to be very effective applied to a range of real data
(illustrated in the next subsection).

Nevertheless, we have confirmed that quasi-concavity is the case for the AR(1) model
used in simulations in previous Chapters by plotting f (¢, m). Hopefully, quasi-concavity
is a generic feature of this type of objective function.
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5.4.2 Empirical evidence

Using the parametric model
m(X,c) =cy+ R +caRi_1

we employ our algorithm to compute the simple step function M-estimator
of Chapter 4, for the IBM data previously described. Since (as discussed in
Chapter 4), linear models can only be identified to scale, we set ¢; = 0.1.
The estimator to be computed is:

by € arg min — / Ryy1-Ieo+ 0.1 + coReq] dF N (5.2)

(co,c2)EB
B = [-10,10] x [-11]

We now describe the step-by-step results from an implementation of the
proposed algorithm.

Step 1: Obtain computational estimates of the minimising value of fj
on B where:

: 1 i\
foz—/RtH. <1+exp (—CMO RQfO“QR’f 1)) dFy  (5.3)

These are:
b2 = (0.0043, —0.5658)

Steps 2 and 3: Obtain a computational estimate for the solution to
(5.2) after all” recursions of Step 2:

b = (0.0036, —0.4765)

where ¢/ = 0.85¢7 ! for J > j > 0 and J = 100.

The computational estimate for the minimum of fy is:

fn (b)) = —9.4025 « 10 (5.4)

Figure 5.3 plots the sequence {bﬁ}jzo and the computational approxima-
tion to by obtained by a grid search described below:

739% of the recursions of this step resulted in improvements in the objective function
indicating that the chosen sequence {mj} did not cause too many redundant optimisations
which could be a source of wasted computing time.
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Figure 5.3. The circles display bﬁ' computed at each recursion of Step 2 of the

computational algorithm. The * is the starting point bg computed by the genetic

algorithm and the X is the grid-search parameter. The grid search is less accurate

than the computational algorithm as indicated by an evaluation of f at the

minima obtained by each method.

Grid Search: We performed a grid search (already used to plot Fig-
ures 7 and 8) over 81 x 301 = 24381 points spaced evenly in rectangles
of dimension (0.0005 x 0.01) on (cg,c2)-space and obtained the following

results:
The grid-search estimate for the solution to (5.2) is:

bgria = (0.0035, —0.45)

The grid-search estimate for the minimum of fy is® (compare to (5.4)):

fn (bgria) = —9.2226 % 1074

Our empirical results suggest the following:

(5.5)

e The proposed computational procedure is very accurate (slightly more

accurate than a grid search which takes 10 times as long).

e The recursions of Step 2 lead to significant improvements over the

point estimated in Step 1.

®Note that the grid-search minimum of fo was also obtained and performed worse
than the minimum obtained by our genetic algorithm, confirming convergence to a global

minimum in Step 1.
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It therefore seems that the results of Proposition 5.1 seem to apply and
that the algorithm is very effective in that it shifts the speed-accuracy fron-
tier significantly outwards relative to standard techniques. Note that we
should expect the algorithm’s performance relative to the grid search to
improve further as the number of parameters increases.

5.5 Conclusions

We have analysed the difficulties involved in computing the global minimum
of the average of a certain type of random step functions. We proposed an
intuitive optimisation algorithm and derived conditions under which we can
show that it will perform well. Indeed, it does perform well in a simple but
relevant empirical application.

Further research will compare the performance of this algorithm to com-
petitors more sophisticated than grid-search, such as simulated annealing.
It is hoped that the theoretical results may be extended, in particular by
finding primitive conditions on the c.d.f. F of (Y, X) that imply the quasi-
concavity condition used in Proposition 5.1.

5.6 Appendix

5.6.1 A. Proof of lemmata and proposition
Lemma 5.1 Let A4.6 hold. Then f7(c) converges uniformly to f(c) as

¢J =0, e

Jim sup |7 (c) = f ()| =0

Proof. Notice that for any « :

|7 () = £ ()]
< ‘/Y ((1+exp (—#))4 —1[m(X,c) >O]> 1[|m(X, )| > a]dF
+ /Y ((l+exp (—%j”)»_1 1 m(X, ) >o1> 1 [m(X,¢)| < o] dF

If a > 0, the first term converges to zero uniformly over ¢ as ¢? tends to
zero. The second term is smaller than:

/ V|- 1[|m(X, )| < a] dF

So by the boundary condition (A6) for all ¢? the second term also converges
to zero uniformly over ¢. ®
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Lemma 5.2 Assume A4.2-4.4 and that there exists a De : X — [0,00 )

-1
with [ D¢ (X)dFx < oo and ‘Y- (1 + exp (—%)) ‘ < D¢ (), for all

(z,¢) in X x B and ¢ > 0. Then for all 7 € [O,CO], fjjv (c) converges
uniformly almost surely to f7 (c) as N — oo
- 0> 1

Proof. For all ¢° > ¢/ > 0, by Manski (19884, Theorem 2’, p.101), our
assumptions imply:

Pr (sup ‘f]JV (c) — fj (c)

ceB

Pr ( lim sup‘f;'v (¢) — fI (c)‘ - o> —1 (5.6)

N—o0 ccB

So fjj\, (¢) converges uniformly almost surely to fi(c)forall ¢® > ¢7 > 0. The
same condition also holds for ¢/ = 0 as is shown in the proof of Proposition
4. Hence convergence is uniform almost surely for all {7 € [O, CO}. [

Lemma 5.3 Assume fJ]V (c) converges uniformly almost surely to f7 (c) as
N tends to infinity and that c is in a compact set B. Then b}, converges
almost surely to b7 as N tends to infinity, i.e.

Pr<1&iinm‘bg§—bj‘:o> =1

Proof. See for example Amemiya (1985) Theorem 4.1.1 as modified by
footnote 1. =

Proof of Proposition 5.1. Suppose that for j* € {0,1, ..., J} it is the
case that almost surely:

b= b

By Lemma 3, for N > N,, there exists an N such that for all j € {0,1, ..., J},
when N > N.:

‘bgv — ’ < ¢ almost surely, (5.7)

SO!:

b — ’ < ¢ almost surely. (5.8)
Quasiconcavity of f (c,¢) implies (by the theorem of the maximum) that b’
is a continuous function of (7. Since continuity on a compact set implies
equicontinuity, we have that &’ is an equicontinuous function of ¢ jon 0,
Hence, there exists an a such that for all j:

F-fl<a= ‘bj"'l —bj‘ < Eq (5.9)
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so using (5.8), for N > N., almost surely:

b —bj*‘Jr‘bj*“—bj*‘ <e+ea

Applying (5.7) for j + 1, we obtain that for N > N., almost surely:

C

+’bj*—bj*+1‘+’bj*+1_bg\;+1‘ <% teq

so for N > Ng, almost surely:

bz* — bﬁ“‘ < 2e 4 éeq.

Let 2e + €4 < €*. Then, Assumptions 3b and 3¢ ensure that for N > N._,
almost surely:

i =l (5.10)

which means that (5.7) holds for all 7 > j*. Now by the second assump-
tion made for this proposition, (5.7) holds for j* = 0, therefore it must hold

for all j. Taking any finite sequence {Cj}g, such that ¢/ — 9! < a and for
which ¢7 = 0 it follows that:

‘bg — bM =0, almost surely.
Since from Proposition 1 as N tends to infinity,

‘b]‘{, — bN‘ = 0, almost surely.
It follows that as N tends to infinity,

‘b;’ — bN‘ = 0, almost surely.

5.6.2 B. Setting the smoothing parameter (,

We assume we are working with zero mean (or demeaned series).

To set ¢ we propose the following procedure:

Step 1: Obtain an OLS estimate b'® of the parameters of m (X, c).

Step 2: Estimate the standard deviation o of m (X, bls) .

Step 3: Set ¥ = %.

The logic of this is the following:

We expect that Pr [—20 <m (X, bls) < 2(7] is large given that for zero
mean series, the mean of m (X, bls) is likely to be small.

Now the range in which the function (1 + exp (x)) ' is curved is (say)
[—10,10].
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We can therefore set (¥ = % and expect that for most observations,

ﬂ?’)ﬂl is indeed smoothed.
We assume we are working with zero mean (or demeaned series).
To set ¢° we propose the following procedure:
Step 1: Obtain an OLS estimate 5" of the parameters of m (X, c).
Step 2: Estimate the standard deviation ¢ of m (X, bls) .
Step 3: Set (¥ = %.
The logic of this is the following:
We expect that Pr [—20 <m <X, bl5> < 2(7] is large given that for zero

mean series, the mean of m (X , bls) is likely to be small.

Now the range in which the function (1 + exp (x))™" is curved is (say)
[—10,10].
We can therefore set ¢ = % and expect that for most observations,

R is indeed smoothed.
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